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Aerosol radiative forcing co-determines our climate future
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Effective radiative forcing, 1750 to 2019
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From IPCC Assessment Report 6, Working Group 1, Chapter 6: Short-lived climate forcers (2013)



Dust has increased strongly since pre-industrial times

= Globally, atmospheric dust loading has increased by ~25-
100% (Mahowald et al. “10; Hooper & Marx ’18; Kok et al., in

prep)
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Current climate models miss “Anthropocene dust”
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Possibly substantial “missing” radiative forcing?

o Need to figure out net direct (and indirect) radiative effects of dust!
o Depends strongly on dust size!



Are models missing a substantial radiative forcing due to
dust direct radiative effect?

Dust direct effect depends on dust
sizes

o Fine dust (D <5 um) cools by
scattering SW

o Coarse dust (D = 5 um) warms by
absorbing SW and LW

o AeroCom phase 1 models indicated

*

Global dust DRE at TOA (Wm)

strong net cooling

(Ta)

But AeroCom models have fine

bias

o Emit too much fine dust, not enough
coarse dust

- Dust is less cooling, could net warm
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Are models missing a substantial radiative forcing due to
dust indirect radiative effect?

Cloud
albedo

= Fine dust cools by seeding cloud v

droplets v
= Coarse dust warms by reducing cloud
droplet number concentrations as giant JRAAR

-, effect
CCN
. Unperturbed
o Produces warming of ~0.2 + 0.1 W/m? | | MM\
(Klingmuller ‘20) o

= Dust is main ice nucleating particle

o Probably net cooling in global average (Liu et
al., 2012; McGraw et al. 2020)

Few INP - Cirrus form More INP - Fewer and larger
Highest/Coldest Cirrus ice particles, more
More Ice (Net Warming) extensive cirrus

De Mott et al. (2010); Heymsfield et al. (2017)




So “missing” radiative forcing by dust
highly dependent on dust size;

Fine dust cools (generally)
Coarse dust warms (generally)



Several lines of evidence
indicate that models greatly

underestimate coarse dust

1. Lidar measurements show models
significantly underestimate coarse
dust over North Atlantic (Ansmann et [
al., 2017)
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Several lines of evidence
indicate that models greatly
underestimate coarse dust

1. Lidar measurements show models
significantly underestimate coarse

dust over North Atlantic (Ansmann et
al., 2017)

2. Coarse dust particles are found at
greater distances than possible from
model simulations (Maring et al., 2003,
Weinzierl et al. 2017, van der Does et al. o
2018).
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1.

Several lines of evidence
indicate that models greatly

underestimate coarse dust

Iidar measurements show models
significantly underestimate coarse

dust over North Atlantic (Ansmann et
al., 2017)

Coarse dust particles are found at
greater distances than possible from
model simulations (Maring et al., 2003,
Weinzierl et al. 2017, van der Does et al.
2018)..

Dozens of in situ measurements show
much more coarse dust than
simulated in model ensemble
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Overview

= How much coarse dust is missing from
global models?

= What is the direct radiative effect of the
missing coarse dust?

= What's causing models to underestimate
coarse dust and how can we fix this?
= DO models underestimate coarse dust
emission?
= DO models overestimate coarse dust
deposition?




Joint experimental-modeling analysis to
constrain 3D atmospheric dust size distribution

Ensemble of simulated 3D size

distributions (GISS, WRF-Chem,

Arpege, IMPACT, CESM, GEOS-
Chem)

l

For each model, determine
correction factor (as a function of
D) that minimizes disagreement
against measurements

l

Constraint on 3D

Dozens of in situ
measurements of
atmospheric dust size
distribution

atmospheric dust size
distribution:

dV 4:m (0, @, z)

Propagate uncertainties using
procedure based on bootstrap
method

dD




Our estimates agree better with measurements
over different locations, height levels, and seasons
=> Almost complete elimination of bias
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Most coarse dust mass is missing
from (phase I) AeroCom models
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# The atmosphere contains 17 + 5 Tg of coarse dust!
# AeroCom models include only 3.7 + 1.3 Tg

m  About 3/4 of coarse dust is missing from AeroCom models!




Overview

= How much coarse dust is missing from
global models?

= What is the radiative effect of the missing
coarse dust?

= What's causing models to underestimate
coarse dust and how can we fix this?
= DO models underestimate coarse dust
emission?
= DO models overestimate coarse dust
deposition?




Joint experimental-modeling analysis to
constrain dust direct radiative effect

Ensemble of simulated 3D size
distributions (GISS, WRF-Chem,
ArPege, IMPACT, CESM, GEOS-Chem)

}

For each model, determine correction
factor (as a function of D) that minimizes
disagreement against measurements

Dozens of in situ
measurements of
atmospheric dust size
distribution

Dust extinction
efficiency, 0. (D)

|

Constraint on 3D
atmospheric dust size
distribution:
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Global TOA
dust direct

radiative effect

Ensemble of model
estimates of TOA
direct radiative effect
per unit dust AOD, as
function of D




Missing coarse dust adds ~0.1 W/m? warming
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= Accounting for missing coarse dust increases TOA
warming by 0.15 + 0.06 Wm™

m Still unclear if dust direct radiative effect net warms or cools!




Overview

= How much coarse dust is missing from
global models?

= What is the radiative effect of the missing
coarse dust?

= What's causing models to underestimate
coarse dust and how can we fix this?

= Do models underestimate coarse dust
emission?

= Do models overestimate coarse dust
deposition?




Models underestimate fraction of
emitted dust that is coarse

= Modeled coarse dust depends on |3 e
size distribution of emitted dust |3 r ﬁ‘;q '
. e ‘W'm i
assumed in models B o) e
= Measurements: vertical dust flux | %
. . o Lol % < Gllatte 74
from eroding soil corrected to £ ooty g o
volume-equivalent diameter 2 AT
$ 00014 e
0.2 1 o 10 40
m MOdElS underEStlmate emlttEd Dust aerosol geometric dlzfmeter,D(pm)
coarse dust (Huang, Kok, et al., GRL, ‘21)

" Causes underestimate of in situ |, mmeesmmoem.
measurements of freshly lifted |3 =ewwseseen /Y
coarse dust

= Need to develop improved i
parameterization r |
= What determines size I e |
distribution of emitted dust? bt gromeri ey

(Meng, Kok, et al, GRL, in press; measurements from Ryder ‘“13)



Macrophysics of dust emission: Saltation

= Dust aerosols (~0.1-50 um) are emitted by saltation, the
wind-driven hopping motion of sand grains (~250 um)

Smaller particles
ejected by larger
saltating particles

o )

12 Jasper Eok and Sharma Shaked 2006




Microphysics of dust emission:
Fragmentation of dust aggregates

= Small particles (< ~50
um) in desert soils
form aggregates

= Upon impact, energy
is transferred from
Impactor to aggregate

|mpact -
= What is final state of T energy
aggregate? Does it

fragment? Into what
particle sizes? O+ +@+‘

] ym
From Diaz-Hernandez and Parrage (2008)



Analog: fragmentation of brittle materials

Dust aggregate fragmentation
is very complex problem

Closest analog is fragmentation
of brittle materials (e.qg., glass)

Measurements show size
distribution is scale-invariant (a
power law)

= Resulting size distribution:

dN
dlog D,

-2
oC Df

Scale invariance occurs widely
in nature (many small, few large
events)

What causes scale invariance in
brittle material fragmentation?

Dust aggregate
fragmentation:

impact ?
+en2rgy-
orff - a8-GB

Analog: brittle
fragmentation
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Scale invariance due to crack merging

Fragments are produced by propagation and merger of cracks in

brittle material

Main crack ‘emits’ side cracks at approximately regular intervals (L)

Cracks are attracted to each other

When cracks merge, fragments
form

In 1%t ‘generation”: N/2
fragments of typical size L

In 2" ‘generation”: N/4
fragments of typical size 2.
and so on

Yields dN/dlogD; ~ D;2in 3D,
as observed

Source: Astrom, 2006

Brittle material sample




Limits to scale invariance

| Scale InV@I’Ia_nCG Ca_n Only Dust aggregate a‘l;zlgge;lt);itilﬁ
hold for limited size fragmentation: iy
range e

= Cannot hold for sizes O+§+@+@
smaller than indivisible
constituents

= Size of crystal unit or
molecules (~0.1 —1 nm)
for glass, gypsum

= Size of discrete dust
articles (~0.1 — 50 um)
or dust aggregates
= Cracks will fpropagate
|

along surfaces of discrete
dust particles!




Largest fragments are ~10% of size of object

s Scale invariance cannot A M

hold for sizes larger than 5,

finite side cralck h O | j}h
propagation length (A
N|ENENSRSS
= Measurements and models ¥ ]j”ﬂ?ﬁhjﬂl

of brittle fragmentation

(e.g., Astrom, 2006):
dNy4 , Dg\°]
dinD, P eXp[_(T) _
A= f/lDobj; de -2 _ Dd ’ M} -
fi = 0.1 dInDgy *x Dq " exp _ <f/’lDobj> D o1




Let’s apply this now to derive the size
distribution of dust produced by
fragmentation of soil aggregates!

Analog: brittle

Dust aggregate
5 fragmentation

fragmentation:

. ?
@ﬂmﬁ;-
O+£+@+@




Dust size distribution is consistent with
brittle fragmentation physics

= Dust emission follows brittle
fragmentation power law
in ~1 — 10 um range

= Emission of finer dust

reduced from power law
= Expected from >~1 um size
of discrete dust particles

s Coarser dust also reduced
= From finite distance
between cracks
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Expression for emitted dust size distribution

Analytlcal expression:

dInD, D2 ‘ Pins ,1
L' |
~ Scale  ggjl cumulative
Invariancemags fraction < D,

dN, limﬁr, D, / Dsbwl.}

Creation of smaller dust aerosols limited by
availability of discrete dust particles

Emitted fragment of size 0, is made up of

soil constituents = D,
- Amount of emitted D, proportlonal to
amount of soil const|tuents with Do = Dy

Assume log-normal distribution of dust
particles (< 50 um) in soll

= D,y and o, describe distribution of
disaggregated dust in soil

Creation of larger dust aerosols limited by
finite distance between cracks

_ ?
+|mpacta

energy

Norm. emitted size distr. (AN/d In D)
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Accounting for size distribution of soil aggregates

m Size distribution of soil dust BB
aggregates (PSD(D,g)) is lognormal — ELER B
= For arid regions, no clear relation to SaNSNS
soil properties. Measurement
compilation:
8 Dygp =127 +47 pm
" Ojgg — 3.0+ 1.0
<4 D >
Size distribution from fragmenting dNg o D=2 _(_Da ’
single soil aggregate: dinDg 4 &P f1Dage
Size distribution produced AN D 3
by soil with range of d_ D72 PSD(D,gq ) €xp [—( d ) dD,
soil aggregates: d1n Dq ’ f * f2Dagg *




Expression for emitted dust size distribution

dN,

C
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mass fraction < D,
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Finite crack
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Can a global aerosol model with
improved emitted dust PSD
parameterization reproduce in situ
measurements of coarse dust?
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Model with parameterization reproduces
freshly lifted coarse dust

= Implemented
parameterization into

Com m u n ity Ea rth ) 1; I Freshly uplifted dust in Mali and Mauritania |
System MOdeI (CESM) %. - Below 1000m above sea level P ST S\ P 4
| Re p rOd u CeS m ea Su red g —e—lcr;EssltMu ;g:a_lrs:uremer;ts
(normalized) size R A e >y P
distribution of freshly

From Meng, Kok, et al., GRL (in press); measurements from Ryder et

Ilfted COa rse d ust al *13, corrected to geometric diameter following Huang, Kok, et al ‘21



Model starts underestimating
super coarse dust after aglng
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= The higher the altitude, the larger the underestimation



Model still greatly underestimates super coarse
dust after Iong range transport
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= Need to reduce dust density by x10 to capture long-range transport!
= Similar conclusion by recent paper by Drakaki et al. (ACP, in discussion)



Overview

= How much coarse dust is missing from
global models?

= What is the radiative effect of the missing
coarse dust?

= What's causing models to underestimate
coarse dust and how can we fix this?

= Do models underestimate coarse dust
emission?

= Do models overestimate coarse dust
deposition?




Partial explanation #1: Dust asphericity slows
settling; increases lifetime by ~20%

Cumulative probability
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Partial explanation #2: Gentle topography dramatically
increases vertical transport of coarse dust in ABL

Heisel, Chen, Kok & Chamecki, JGR, 2021






Partial explanation #3: Turbulence in
Saharan Air Layer likely slows settling
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= Turbulence could be generated by shear and
buoyancy (dust SW warming and/or LW cooling)

= Simple model: turbulence has potential to
decrease deposition flux and increase lifetime

= Detailed LES study ongoing

Credit: Marcelo Chamecki



So what’s causing models to overestimate coarse
dust deposition?

i Barbados (Weinzierl et al., 2017)
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Dust asphericity
slows settling

greatly enhances
vertical transport of
coarse aerosols

One or more other mysterious
processes:

Self-lofting

Electrostatic forces

Excessive numerical diffusion
Convection events

Etc




Summary and conclusions (1)

= The atmosphere contains
17+5 Tg of coarse dust

= About a third of all PM by
mass!

= Models account for only
~quarter of this

= Adds 0.15 £ 0.06 W m~2
of warming
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Summary and conclusions (2)

= Models underestimate
coarse dust emission

= Dust shatters like glass!

« New parameterization
captures coarse dust near
source regions

s Models also overestimate
dust deposition

= Reasons not yet fully clear
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