DustClim WP3 Solar & Aviation products

Athanasios Votsis & the DustClim Team Feb 2021

I. Solar energy

Soiling index Sunshine hours Optimal cleaning frequency

Soiling index [% of transmittance reduction]

- Bergin et al. (2017), adapted in D3.1 and Rautio et al. (in preparation).
- $\Delta T = -(E_{abs} + \beta E_{scat})^*(dep_{dry} + dep_{wet})$
- For dust particles, E_{abs} = 0.02, β = 0.02, E_{scat} = 1
- Soiling Index = $0.04*(dep_{dry} + dep_{wet})*100$
- Simple approximation, does not take into account other performance reduction factors (e.g. salt deposition, self cleaning from wet deposition). Assumes a horizontal fixed solar PV panel. Assumes that change in transmittance is linearly related to the mass loading of particulate matter (dust only).

Climatology of soiling index (2007-2016)

min

25%

50%

75%

max

Time series examples (Barcelona vs Berlin pixels)

Sunshine duration [hours]

- WMO (2018)
- Derived from the count of 3-hour segments with DNI > 120 Wm⁻²
- Provides the potential maximum sun hours, corrected with the presence of dust.

Climatology of sunhours (2007-2016)

Potential maximum sunshine hours, multiyear Annual

	ANN	DJF	MAM	JJA	SON	
mean	8.6	7.3	9.0	9.9	8.2	
std. dev.	2.3	3.3	2.1	2.6	2.8	
min	0	0	0	0	0	
25%	7.4	4.2	8.1	8.6	6.5	
50%	9.2	8.2	9.6	10.4	9.0	
75%	10.3	10.0	10.6	11.7	10.3	
max	13.7	13.5	15.0	16.0	14.3	

Potential maximum sunshine hours, spring (MAM)

Potential maximum sunshine hours, summer (JJA)

12

10

8

A Contraction of the second se

Potential maximum sunshine hours, autumn (SON)

sunhour

· 10

Optimal cleaning frequency [days]

- After Abu-Naser (2017). After how many days a panel should be cleaned to operate with profit, given cleaning cost, electricity selling price, capacity [constants], sunshine hours, and retrospective average soiling index of past month [reanalysis].
- OCF = sqrt(2ic / α si β),

where *OCF* is the optimal number of days between cleaning cycles, α the average daily losses in solar conversion efficiency due to dust deposition, *s* the average sun hours per day, *i* the kW capacity of the installed panel, *c* is the cleaning cost per kW size, and β the selling price of one kWh of electricity.

Climatology of OCF for indicative commercial and domestic solar PV panels (2007-2016)

	commercial	domestic
<i>i</i> (size, kW)	100000	6
c (unit cost of cleaning, \$/kW)	0.032 (machine)	0.19 (manual)
β (electricity price, \$)	0.13	0.13
s (mean daily sunlight, hours)	location and time specific; see Section 3.3	
α (mean daily loss of output, ratio 0-1)	location and time spe	cific; see Section 3.2

log10 Optimal Cleaning Frequency (days, Commercial), multiyear Annual

log10 Optimal Cleaning Frequency (days, Domestic), multiyear Annual

Time series examples (Barcelona vs Berlin pixels)

Investment & operational risk: Climatological variability

3.5

- 2.0

- 1.0

· 12

Investment & operational risk: Ensemble avg vs max, Soiling index

soiling

Ensemble max vs min, Soiling Index, autumn (SON)

- 3.0

- 2.5

2.0

- 1.5 🖓

· 1.0

Investment & operational risk: Ensemble avg vs max, Optimal cleaning frequency for commercial SPV panels

Societal benefits: SWOT analysis

internal

internal

external

South Europe Solar Energy SWOT

Strenghts

- Europe is leading in installed capacity
- PV is still seen as a secure investment for
- investors with secure rates of return Technical potential of PV is several times more than energy consumpiton in certain

regions Opportunities

- Government-supported tariffs have remained high
- System prices decrease rapidly
- Development of Climate Services improve PV energy forecasts

Weaknesses

- Debate of reducing support tariffs
- Uncertainty of policy support
- Uncertainties reduce investors' confidence in the markets
- Uncertainties in forecasting PV energy production

Threaths

- Growth of PV has concentrated only in external few countries
- Economic potential of PV is strongly dependent on international climate policy and national energy policies

Strenghts

- Potential for Solar Energy
- Energy security Low political risk
- Political and economical support
- PV energy is unlimited and carbon free

Opportunities

- Rural areas lack acces to power grid
- Grid systems are generally unreliable
- Solar Energy meets international
- commitments for renewable energy
- Energy demand
- Sustainable growth & SD goals
- Reduces poverty through electicity access

Weaknesses

- Storaging energy
- Technical inefficiency
- System costs
- Possible extra costs (repairs)

Threaths

- Technical and expertise lag
- Loan interest rates

Middle East Solar Energy SWOT

Strenghts

- Large potential due to climatology
- PV systems help to achieve RE targets
- Solar Energy has more potential than wind
- Transition towards environmentally
- friendly policies (Saudi Arabia)

Opportunities

- Feed in tariffs
- High energy consumption per capita
- Underused energy production capacity
- Decreasing capital costs of PV systems

Weaknesses

- SDS storms Inefficient energy use
- High dependency on fossil fuels
- Critical infrastructure is affected directly or indirectly by conflicts

Threaths

 Political instability - Conflicts

 High reserves of oil and natural gas Inadequate share of renewable energy A way to correspond the solar products to the current strengthsweaknesses-opportunities-threats of the solar energy sector in the NAMEE region.

internal

external

Therefore, systematizing how these products address the identified strategic situation in these regions for the energy sector.

Africa Solar Energy SWOT

- SDS storms

Societal practises

- Political instability

II. Aviation

Ground visibility Flight route exposure

Visibility

Visibility threshold (meters)	Limit/Range	Procedure			
Visual Flight Rules (VFR)					
10000+	over				
10000	below				
8000	below				
5000	below				
3000	below				
1500	below				
Instrument Flight Rules (IFR) according to ICAO/FAA thresholds					
800+	over	CATI			
800–350	between	CAT II			
350–200	between	CAT III A			
200–50	between	CAT III B			
50–0	between	CAT III C			
Low Visibility Procedures (LVP)					
550	below	Restricted ground operations			
end-user specified values	below	Restricted ground operations			

Koschmieder formula (Goldish 1997) corrected by a 0.5 factor (Konstantina's MSc thesis 2020):

- VIS = 1.96/sec550du [VIS_{max} = 22000 m].
- Number of exceedances of each of the 12 regulatory thresholds.
- **Probability of exceeding** each of the 12 regulatory thresholds.
- Gridded output + extraction for coordinates of NAMEE airports.

Climatology of visibility, 2007-2016

Climatology of P(ILS CAT I), 2007-2016

Flight route exposure

hPa	Flight Level	Critical flight stages	
1000	FL000 (ground)	take off, landing, taxying	
975	FL010	min. alt. for light aircraft	
850	FL050	initial climb/min WAFS/WAFC	
750	FL080		
700	FL100	decent	
600	FL140	climb	
500	FL180		
400	FL240	climb/initial decent	
350	FL270		
300	FL300		
250	FL340		
175	FL410	cruise	
150	FL450		
100	FL530	max WAFS/WAFC	

- **Spatial join operation**: vectorized hard-coded interpolation of total concentration (Thiessen polygons) *U* geodetic flight routes in NAMEE.
- For 11 Flight Levels (975-100 hPa) following the convention for gridded aviation weather forecasts.
- Accumulation of particle exposure per flight path (with option to compute average exposure per route).

Climatology of exposure at 3 critical Flight Levels

Initial climb [FL050/850hPa]

Climb [FL240/400hPa]

Cruise [FL410/175hPa]

Climatology of exposure at cruise (FL410/175hPa)

Airport resilience

A novel classification that accounts for:

- Landing support instrumentation.
- Ability to cope with excessive demand.
- Proximity to alternative airports.
- Visibility climatology.
- Flight route exposure climatology.