Vertical profiles of atmospheric aerosol

Adolfo Comerón*, Francesc Rocadenbosch, Michaël Sicard, Constantino Muñoz, David García-Vizcaíno, Alejandro Rodríguez, Miguel Angel López, Oscar Batet, Dhiraj Kumar, Diego Lange, Mohd Nadzri Md Reba, Sergio Tomás

*UPC - Dept. TSC - Grup D3-EEF Jordi Girona 1 - 3 - Edifici D3 Tel: 93 401 68 12 e-mail: comeron@tsc.upc.edu

II Lectures on Atmospheric Mineral Dust Barcelona, 6th of November, 2012

Outlook

- Lidar (laser radar) principles
- Types of aerosol lidar
- Aerosol lidar networks
- Space-borne systems
- Access to aerosol lidar data
- Summary

II Lectures on Atmospheric Mineral Dust – Barcelona, 6th of November, 2012

RSI AB

- Question: why remote sensing of aerosols

 ≈ optical methods? (e.g. sun-photometer, lidar)
- Answer: Strong interaction at optical wavelengths between electromagnetic radiation and suspended particles

 Question: why remote sensing of aerosols \approx optical methods? (e.g. sup-photometer, lida optical nagnetic Ans way les radi

- Question: why remote sensing of aerosols

 ≈ optical methods? (e.g. sun-photometer, lidar)
- Answer: Strong interaction at optical wavelengths between electromagnetic radiation and suspended particles
- Light scattering by aerosol is used to obtain information on aerosol optical and microphysical properties

Ground-based aerosol remote sensing Passive (\approx sun photometer) vs Active ($\approx \rightarrow \equiv$ lidar)

Passive Active

A B

Ground-based aerosol remote sensing Passive (\approx sun photometer) vs Active ($\approx \rightarrow \equiv$ lidar)

ipal

Passive

- Depends on sun (or stars) → cannot operate in night-time (except if it uses star light) nor under cloudy conditions
- Many wavelengths (solar spectrum bands) → relatively easy to retrieve aersol microphysical properties
- Column-integrated properties

Active

- Has its own interrogator source (laser) → night- and day-time operation, without and with clouds
 - Few wavelengths → difficult retrieval of microphysical properties

Range resolution

Range resolution

Basic lidar (laser radar) setup

Adapted from R. M. Measures: "Laser Remote Sensing. Fundamentals and applications". John Wiley & Sons, 1984

Aerosol lidar

- Physical principle:
 - Elastic scattering, both Mie (particles of size in the range of the wavelength→i.e. aerosols) and Rayleigh (particles of size << wavelength → molecules)
 - Raman-shifted scattering by N_2 or $O_2 \leftarrow$ advanced systems
- Primary product:
 - Range-resolved aerosol optical coefficients (extinction, backscatter)
- Lasers:
 - Ruby (λ = 694.3 nm, 347.2 nm)
 - Excimer (λ ~350 nm)
 - <u>Nd:YAG</u> (λ = 1064 nm, 532 nm, 355 nm)

Example of aerosol lidar

In operation...

In operation a few days ago

Receiving system...

000 000 UPC

The complete system...

000 000 UPC

Lidar equation

$$\mathsf{P}(\mathsf{R}) = \frac{\mathsf{CO}(\mathsf{R})}{\mathsf{R}^2} \beta(\mathsf{R}) \exp\left(-2\int_0^{\mathsf{R}} \alpha(\mathsf{x}) \mathsf{d}\mathsf{x}\right)$$

- **C** : Instrument constant
- O(R): overlap factor takes into account signal
- R: Range

takes into account signal suppression at short ranges due to the optical arrangement

β(R): backscatter coefficient

 $\alpha(R)$: extinction coefficient

The lowest-level lidar product:

Range-corrected signal / quantitative information about layer height, but not on optical coefficients

$$X(R) = KP(R)R^{2} = KCO(R)\beta(R)exp(-2\int_{0}^{R}\alpha(x)dx)$$

Barcelona, 6th of November, 2012

Range-corrected signal

Barcelona, 6th of November, 2012

Ceilometers: simple lidars initially designed to measure cloud-base range, but also used to measure aerosol returns at short ranges

Retrieval of the optical coefficients

 $\beta(R) = \beta_m(R) + \beta_a(R), \alpha(R) = \alpha_m(R) + \alpha_a(R)$

 $\beta_m(R)$: molecular (Rayleigh) backscatter $\alpha_m(R)$: molecular (Rayleigh) extinction

 $\beta_a(R)$: aerosol backscatter $\alpha_a(R)$: aerosol extinction

Simplest systems (backscatter lidars)

- Only one transmitted wavelength
- Only one received wavelength from elastic backscatter
- To retrieve the optical coefficients an assumption has to be made concerning the relationship between $\alpha_a(R)$ and $\beta_a(R)$:

$S_a(R) = \alpha_a(R)/\beta_a(R)$

Klett-Fernald retrieval method

$$\frac{\beta(R_m)X(R)exp\left(-2\int_R^{R_m}\left(\frac{8\pi}{3}-S_a(x)\right)\beta_m(x)dx\right)}{X(R_m)+2\beta(R_m)\int_R^{R_m}S_a(x)X(x)exp\left(-2\int_x^{R_m}\left(\frac{8\pi}{3}-S_a(x')\right)\beta_m(x')dx'\right)dx}-\beta_m(R)$$

 R_m : range at which β is known \rightarrow usually range high enough to be free of aerosols, for which β is purely molecular (therefore known)

 $\boldsymbol{\alpha}_{a}\left(\boldsymbol{\mathsf{R}}\right)=\boldsymbol{\mathsf{S}}_{a}\left(\boldsymbol{\mathsf{R}}\right)\boldsymbol{\beta}_{a}\left(\boldsymbol{\mathsf{R}}\right)$

Range-corrected signal

Barcelona, 6th of November, 2012

Range-corrected signal

Klett-Fernald solution: "refinement" if aerosol optical depth of a close-by sunphotometer is available

An constant "average" (throughout the column) ${\rm S}_{\rm a}$ is assumed

$$B_{a}(R) = \frac{\beta(R_{m})X(R)\exp\left(-2\int_{R}^{R_{m}}\left(\frac{8\pi}{3}-S_{a}\right)\beta_{m}(x)dx\right)}{X(R_{m})+2\beta(R_{m})\int_{R}^{R_{m}}S_{a}X(x)\exp\left(-2\int_{x}^{R_{m}}\left(\frac{8\pi}{3}-S_{a}\right)\beta_{m}(x')dx'\right)dx}-\beta_{m}(R)$$

$$\alpha_{a}(R) = S_{a}\beta_{a}(R)$$

S_a is iteratively adjusted until

 $\int_{0}^{R_{m}} \alpha_{a}(R) dR \approx AOD_{SP}$

Example of Klett-Fernald method constrained by sunphotometer AOD measurement

More elaborated systems (elastic-Raman lidars)

- One transmitted wavelength
- Two received wavelengths:
 - Elastic (aerosol + molecules)
 - Raman-shifted wavelength from an abundant (e.g. N₂) atmospheric constituent
- The Raman-shifted wavelength acts as a "marker" signal
- No assumption about relationship between $\alpha_a(R)$ and $\beta_a(R)$ is needed
- Independent retrieval of $\alpha_a(R)$ and $\beta_a(R)$

RAMAN SCATTERING

Combination of elastic backscatter + N₂

Elastic + Raman combination

- Backscatter Raman very faint → difficult to operate Raman channels in day time because of noise induced by background radiation.
- Alternative: high-spectral resolution lidar (more complex than Raman, but more sensitive)

HIGH SPECTRAL RESOLUTION LIDAR (HSRL)

Principle similar to Raman, but using Doppler-widened elastic molecular return

Adapted from E. E. Eloranta, "High Spectral Resolution Lidar", in *Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere* (C. Weitkamp, ed.), Springer, 2005

 $P(R)R^{2} = C\beta_{m}(R)e^{-2\int_{0}^{R} \left[\alpha_{a}(x) + \alpha_{m}(x)\right]dx}$

Another step further: multiwavelength lidars

- The retrieval of extinction and backscatter coefficients at several wavelengths allows the retrieval of aerosol particle microphysical properties:
 - effective radius
 - volume concentration
 - complex refractive index

It has been shown "that under certain constraints a minimum data set of three backscatter coefficients and two extinction coefficients is sufficient for a successful inversion" (C.Böckmann et al. JOSA A, 22, 3, Mar. 2005, pp. 518-528)

EARLINET standard

EARLINET standard

- Nd:YAG laser with 2nd and 3rd harmonic generators → 3 transmitted wavelengths:
 1064 nm (IR), 532 nm (VIS), 355 nm (UV)
- Receiving channels:
 - Elastic backscatter: 1064 nm, 532 nm, 355 nm
 - Raman N₂ channels: 607 nm, 387 nm
 - Advisable: depolarization channels

Barcelona EARLINET lidar station

Another example Input data (wildfire smoke plume in Athens, 29 June 2007)

From Böckmann et al. Proc. IGARSS 2008, pp. II-422 – II-425

Results: volume distribution of particles, mean refractive index m = 1.37 + 0.006i

Multiwavelength lidar + sunphotometer

In day time, with no Raman channels available, synergies with sunphotometer allow volume profiles of fine and coarse mode volume concentrations

x 15 m

Results of LIRIC software (A. Chaikovsky's, Inst. of Physics, Nat. Acad. Sc. of Belarus) on UPC lidar measurements

30 lidar stations operating in a coordinated way: → 4D picture of aerosol distribution at continental scale → aerosol climatology at continental scale

- 3+2 (+...) stations (aerosol typing, microphysics): 13
- Raman lidars (extinction profiling): 9
- Backscatter lidar: 9
- Depolarization channel (aerosol typing): 15

Collocated sun-

ACTRIS infrastructure

II Lectures on Atmospheric Mineral Dust – Barcelona, 6th of November, 2012

RSI AB

BEYOND EARLINET

- GALION: WMO's Global Atmosphere Watch Aerosol Lidar Network
- Federates existing lidar networks
- EARLINET is striving to set up the standards for measurement methodology, and hardware and software quality assurance

ALINE • AD-NET • CISLINet • EARLINET • MPLNET • NDACC REALM/CREST - CORALNet (Canada) not shown

EARLINET SUPPORT FOR SPACE-BORNE LIDARS

- Calibration validation activities for
 - CALIPSO (current)
 - ADM-Aeolus (future)
 - EarthCARE (future)

Lidar from space: CALIOP instrument on board CALIPSO satellite (NASA-CNES)

(since april 2006)

© COES - Juillet 2004 / illustration P.CARRIL

http://www-calipso.larc.nasa.gov/about/payload.php

Characteristics

CALIOP on board CALIPSO (NASA-CNES)

(since april 2006)

Star Tracker X-Band CALIOP Antenna Assembly Nd: YAG, diode-pumped, Q-switched, laser: frequency doubled wavelengths: 532 nm, 1064 nm pulse energy: 110 mJoule/channel 20.25 Hz repetition rate: Wide Field Camera receiver telescope: 1.0 m diameter (WFC) Imaging polarization: 532 nm Infrared Radiometer footprint/FOV: 100 m/ 130 µrad (IIR) vertical resolution: 30-60 m 333 m horizontal Integrated Lidar resolution: Transmitter (ILT) linear dynamic 22 bits range: Payload Housing 316 kbps Assembly data rate:

http://www-calipso.larc.nasa.gov/about/payload.php

Lidar from space: CALIPSO

http://www-calipso.larc.nasa.gov/products/lidar/

II Lectures on Atmospheric Mineral Dust – Barcelona, 6th of November, 2012 http://www.actris.net

A B 20 20 20

II Lectures on Atmospheric Mineral Dust -Barcelona, 6th of November, 2012

http://www.earlinet.org

🔍 75% -

AB

RSI

EARL

Access to EARLINET database

Logout

logged in as adc

Date minimum:

Date maximum:

Season between:

Public data only:

Station: Categories:

File type:

EARLINET Home Fileformat Docs

Dataset Search

Daytime hours between:

Emission wavelength:

Introduction Search Results

Feedback

2010-04-01 (YYYY-MM-DD))	+	×
2010-05-31 (YYYY-MM-DD))	+	×
and (нн:	1M)		×
and (MM-	DD)		×
ba		+	×
		+	×
		+	×
		+	×

68 matching datasets Search

II Lectures on Atmospheric Mineral Dust – Barcelona, 6th of November, 2012 🔍 100% 👻 🏿

EARLINET

Access to EARLINET database

AB EARLINET Home Fileformat Docs RSI Introduction

Feedback

Search Results

	Get	ba1005051345.b532	2010-05-05 13:45	2010-05-05 14:15	ba	532	2012-04-18 15:09
	Get	ba1005081532.b532	2010-05-08 15:32	2010-05-08 16:32	ba	532	2011-02-28 13:13
	Get	ba1005100813.b532	2010-05-10 08:13	2010-05-10 09:13	ba	532	2011-02-28 13:21
	Get	ba1005101339.b532	2010-05-10 13:39	2010-05-10 14:39	ba	532	2011-02-28 13:21
	Get	ba1005101441.b532	2010-05-10 14:41	2010-05-10 15:41	ba	532	2011-02-28 13:21
ł	Get	ba1005110957.b532	2010-05-11 09:57	2010-05-11 10:57	ba	532	2011-02-28 13:21
1	Get	ba1005111216.b532	2010-05-11 12:16	2010-05-11 13:16	ba	532	2011-02-28 13:21
	Get	ba1005150955.b532	2010-05-15 09:55	2010-05-15 10:55	ba	532	2011-02-28 13:21
	Get	ba1005151056.b355	2010-05-15 10:56	2010-05-15 11:26	ba	355	2012-04-18 15:09
	Get	ba1005151056.b532	2010-05-15 10:05	2010-05-15 11:26	ba	532	2012-04-18 15:09
	Get	ba1005151537.b355	2010-05-15 15:37	2010-05-15 16:07	ba	355	2012-04-18 15:09
	Get	ba1005151537.b532	2010-05-15 15:37	2010-05-15 16:07	ba	532	2012-04-18 15:08
	Get	ba1005160924.b532	2010-05-16 09:24	2010-05-16 10:24	ba	532	2011-02-28 13:21
ţ	Get	ba1005161028.b532	2010-05-16 10:28	2010-05-16 11:28	ba	532	2011-02-28 13:22
	Get	ba1005161130.b532	2010-05-16 11:30	2010-05-16 12:30	ba	532	2011-02-28 13:22
2	Page Si	ze: 50 💌					
- Dov G	vnload — et selecte	ed Get all Plottin Back Extin	ng ypes: vscatter nction	View selected			

100%

II Lectures on Atmospheric Mineral Dust -Barcelona, 6th of November, 2012

logged in as adc

* . .

Access to EARLINET database

			*	
	Logout	logged in as adc	× m	
RSI AB	EARLINET Home Fileformat Docs Introduction Search Results	Altitude Min _y : 0 Max _y : 12000 Rescale Reset Display Legend V	EARLINE	
	Feedback	Barcelona, Spain(41.393N, 2.12E, 115m) 12000 10000 113000 10000 10000 113000 10000 10000 113000 10000 10000 113000 10000 10000 113000 10000 113000 10000 113000 113000 10000 113000 10000 113000 113000 10000 1130000 113000 113000 113000		
			100	0/ _

Contribution to air-traffic safety assessment

RSI AB

Summary

- Lidar: powerful tool for the measurement of vertical profiles of dust \rightarrow contribution to climate, meteorological and air-quality modelling + ... \rightarrow possibility of operational networks
- Wide range of systems: from simple single-wavelength backscatter instruments to multiwavelength systems combining elastic and N₂ Raman channels, or using high-spectral resolution techniques \rightarrow from information on layering to microphysical properties of aerosol
- Synergies with sun-photometers
- Coordinated ground-based networks → continental to global coverage
- Satellite-borne systems for global coverage
- Cooperation between ground-based networks and satellite instruments

• European Union 7th Framework Programme for Research and Technological Development project "Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)" (Grant Agreement No. 262254)

• Spanish National Plan of Scientific Research, Development and Innovation and the European Regional Development Fund (ERDF) for projects TEC2009-09106/TEC and UNPC10-4E-442

• Spanish Ministry of Science and Innovation for Complementary Action CGL2011-13580-E/CLI.

