

Icelandic dust forecasting

Slobodan Nickovic Republic Hydrometeorological Service of Serbia (RHMSS)

With contributions of:

- Belgrade DREAM team (RHMSS, U of Belgrade)
- Agricultural U of Iceland, Reykjavik
- NOA, Athens
- · CNR, Potenza
- C-CAPS, Mace Head
- Czech Academy of Sciences, Prague

COST inDust

(International Network to Encourage the Use of Monitoring and Forecasting Dust Products)

Major objectives

- □Establish a **network** of research institutions, service providers, and endusers of information on airborne dust.
- □ Exploit dust monitoring **observations** best suited to needs of end-users.
- □ Exploit **dust forecast** products best suited to needs of end-users.
- □ Coordinate R&D to assist socio-economic sectors affected by dust.

WMO SDS-WAS

(Sand and Dust Storm Warning Advisory and Assessment System)

Mission

To enhance the ability of countries to deliver timely and quality sand and dust storm forecasts, observations, information and knowledge to users through an international partnership

SDS-WAS components:

- Warning Advisory
 - monitoring/observing
 - forecasting
 - advising on warnings
- Assessment
 - > reanalysis
 - sub-seasonal forecasts
 - cimate change projections; trends

Icelandic dust: basic facts

- 130 DUSTY DAYS
- TOTAL EMISSIONS: 30.5-40.1 MILLION T
- OCEAN DEPOSITION: 5.5-13.8 MILLION T
- CALCULATED IRON DEPOSITION: 0.56-1.4 MILLION T

Icelandic dust-atmosphere modeling

Why Icelandic dust model?

- No fully dynamic (Eulerian)
 prognostic dust model for
 Iceland in the community
- Purpose: to provide
 - daily dust forecasts
 - studying dust impacts to
 - ☐ Ocean, cryosphere
 - ☐ Cold cloud formation
 - ☐ High-lat-dust (HLD) climate
 - ☐ Local AQ and transport

- inDust and WMO SDS-WAS have included HLD as a research objective
- the newest IPCC statement: dust an important forcer for the HL climate

Modeling challenges

- Small-scale dust sources
- Volcanic dust origin
- HLD specific thermodynamics
- Larger particle sizes
- Unique dust mineralogy
- Unsufficient observations for model validations

Existing Icelandic dust modeling facilities

Model	Lagrang/Euler	Offline/Online	Atm driver	Forercasting status
UKMO NAME	Lagrangean	Offline	UK NWP model	/
University of Oslo	Lagrangean	Offline	NCAR WRF-ARW	/
SILAM FHMI	Euler	Online	HIRLAM	/
Iceland Met Office	Euler	Online	WRF-CHEM	/
DREAM	Euler	Online	NCEP NMM	operational
HiLDA TU Darmstadt	Euler	?	?	/

A potential to establish a future multi-model forecasting page at WMO SDS-WAS site for Icelandic dust models

DREAM-Iceland model*

^{*}The study to be soon submitted for publication (Cvetkovic et al, 2021)

DREAM model dynamics

$$\boxed{\frac{\partial C_k}{\partial t} = -u \frac{\partial C_k}{\partial x} - v \frac{\partial C_k}{\partial y} - \left(w - v_{gk}\right) \frac{\partial C_k}{\partial z} - \nabla \left(K_H \nabla C_k\right) - \frac{\partial}{\partial z} \left(K_Z \frac{\partial C_k}{\partial z}\right) + \left(\frac{\partial C_k}{\partial t}\right)_{SOURCE} - \left(\frac{\partial C_k}{\partial t}\right)_{SINK}}$$

Viscous sub-layer dust emission scheme

$$C_S^{IN} \sim u_*^2 \left[1 - \left(\frac{u_{*t}}{u_*} \right)^2 \right] \quad for \ u_* > u_{*t}$$

Based on Janjic (1994)

Dust emission components

Model version/	LLD (low-lat-dust) DREAM	Icelandic DREAM
surface params		
ALPHA term (dust "mask")	USGS or Ginoux 1km	Arnalds data 1:100 000
BETA term (clay/silt)	STATSGO 1km	Arnalds data 1:100 000
GAMA term (dust particle	D'Almeida or Gomes et al	Hot-spot measurements
size distribution – 8 bins)	Source distributions 1.2 - D'Almeida (1987) - Gomes et al. (1990) 1 2 3 4 5 6 7 8 Size Bin	CLAY SILT 3 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

the starting point to develop sources in DREAM (<1km res)

Arnalds, Dagsson-Waldhauserová, Olaffson (2014)

Dust sources: impact of the model resolution

res = 1/10deg

$res = 1/40 deg (\sim 3km)$

Erosion (sources) & hotspots in H point E grid (dl=dp=1/40) (3. Considerable; 4. Severe; 5. Extremely severe;)

Geo-referenced dust-source-related data

Desert geomorphology

- □ Dust hot spots [75%]
- ☐ Large-scale dust-productive desert surfaces classified as
 - extreme [20%]
 - *severe* [4%]
 - considerable [1%]

Relative contributions to emission (Arnads, unpublish)

Domination of hotspots in emission!

extreme (green), severe (brown) and considerable (blue), hotspot (yellow)

Dust particle size distribution

Particle size distribution at 7 hot spots

(cortesy of L. Lisá the Czech Academy of Sciences, unpublished)

radii

clay

 $0.18,\,0.23,\,0.38$ and $0.73\mu m$

silt

1.5, 3, 6 and 9 μm

Model experiments

Model tests for dust storms

September 2011 case – short-range dust episode; local impacts

Model vs. PM10 12-13 Sep (Reykjavik)

Model vs. CALIPSO extinction

September 2018 case – long-range dust episode Brit and Faroe isles affected

MODIS AOD 20 Sep

Faroe

Model dust

Operational model domain for 3-day forecasts

- https://sds-was.aemet.es/forecastproducts/dust-forecasts/icelandic-dust-forecast (SDS-WAS) or
- ☐ http://www.seevccc.rs/?p=8 (RHMSS)
- ☐ Horizontal res: ~3.5km; 28 vertical levels
- NCEP-NMM atmospheric driver
 - Dust concentration the additional prognostic equation in NMM

Future plans to use DREAM for HLD research

- Development of a circumpolar DREAM
- Dust atmosphere chemical processing (mineralogy)
- Cold-cloud formation by dust
- Transporting dust darkness as an aerosol property

A series of the preliminary tests done to explore model capabilities

Circumpolar HLD DREAM

preliminary tests (G. Pejanovic)

NMMB-DREAM-cirkumpolar: Dust load (g/m²) and 10m wind Forecast base time: 04NOV2013 00UTC Valid time: 04NOV2013 01UTC

1km global UNCCD dust mask (Vukovic, 2019 https://maps.unccd.int/sds/

Global DREAM

Australian dust Jan 2020 \rightarrow Antarctic \rightarrow ice nucleation

https://public.wmo.int/en/resources/meteoworld/serbia-successfully-models-dust-storm-high-latitudes preliminary tests (S. Petkovic)

ATMOSPHERIC IRON PROCESSING AND OCEAN PRODUCTIVITY

FRAGMENT project

- ☐ ongoing research (Perez BSC)
- ☐ use of satelitte data
- ☐ hi-res mineralogy data set

FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe (FRAGMENT)

Carlos Pérez García-Pando (1), Andrés Alastuey (2), Roger Clark (3), Bethany Ehlmann (4), Vicken Etyemezian (5), María Gonçalves (1,6), Adolfo González (1,2), Cristina González-Flórez (1), Robert Green (7), Rebecca Greenberger (4), Oriol Jorba (1), Konrad Kandler (8), Martina Klose (1), Ron Miller (9), Vincenzo Obiso (1), Agnesh Panta (8), and Xavier Querol (2)

How to assess Fe content in dust-productive soils?

Dust-productive Fe-carrying soils

Cambic Vitrisol and Gravelly Vitrisol Cambic Vitrisol and Arenic Vitrisol Arenic Vitrisol Arenic Vitrisol and Leptosol Histic Andosol Pumice Vitrisol

Preliminary DREAM tests: atmospheric chemical dust processing

Adjustments for Iceland to be done:

- Fe-oxides in Icelandic soil sources
- needed modification of chemical processing parameterization
 - o less pollution?
 - o more clouds?
 - low-level dust transport → different particle separation?
 - o less photo-reduction ?

Research plans with the Zongbo Shi group (U of Birmingham)

<u>-</u>	fraction	CaO	Fe ₂ O ₃	
D3	PM_{10}	11.6	16.3	
H55	PM_{10}	12.4	15.1	
Land1	PM_{10}	6.9	18.2	
Maeli2	PM_{10}	8.5	18.4	
MIR45	PM_{10}	8.6	18.8	
D3	PM_{20}	10.3	14.8	
H55	PM_{20}	11.3	13.8	
Land1	PM_{20}	5.8	16.8	
Maeli2	PM_{20}	7.6	17.6	
MIR45	PM_{20}	8.3	18.8	

preliminary tests (S. Nickovic)

Icelandic dust cold cloud formation

DREAM ice nuclei parameterization

Preliminary test with Ullrich et al. (2017) ice nucleation scheme

Next steps: to replace U2017 with Iceland-specific parameterizations – options: Groups of Ben Murray; Konrad Kandler and Kerstin Schepanski, ...)