Dust impacts on aviation

Barbara Scherllin-Pirscher

16 June 2021 inDust webinar

Motivation: April 2010

Eruption of the Eyjafjallajökull volcano in Iceland

April 14:

- Increasing volcanic activity
- Explosive eruptions
- Ejection of fine ash

Ash was advected towards continental Europe

Major disruptions in air traffic

Source: Patrick Nielsen

Motivation: April 2010

Eruption of the Eyjafjallajökull volcano in Iceland

Motivation: April 16, 2010

Motivation: April 17, 2010

Motivation: April 18, 2010

Motivation: April 19, 2010

Motivation: April 20, 2010

Motivation: April 21, 2010

Motivation: Eruption of the Eyjafjallajökull volcano

Eruption of the Eyjafjallajökull volcano in Iceland

- The eruption was relatively small but...
- ...the volcano's ash spread unusually far and stayed for a long time in the atmosphere

Impact:

- Over 100 000 flights were canceled from April 15 to 21, 2010
- 7 million passengers were affected
- 1.7 billion USD in lost revenue to airlines

Saharan dust and Iberian wildfires: October 2017

Saharan dust and Iberian wildfires: October 2017

Saharan dust and Iberian wildfires: October 2017

Saharan dust and Iberian wildfires: October 2017

Wildfires and dust:

- Fires already started in September 2017
- Peak in mid-October (more than 7900 forest fires between October 13 and 18, 2017)
- Saharan dust due to strong wind from the south from October 14 to 17, 2017 (associated with Hurricane Ophelia)

Airplanes:

- Reports of smoke smells on several flights
- Number of flights have been forced to land or divert
- Precautionary landings following repots of smells in the cockpit of airplanes

Volcanic ash vs. dust

- Rare
- Episodic character
- Volcanic explosions are unpredictable

Dust emissions

- Continuous process with seasonal features
- Depend on meteorological conditions
- Dust storms are predictable

Volcanic ash versus dust:

Different physical and chemical characteristics

Impact on aviation:

Mainly at cruise levels

Impact on aviation:

- Mainly at the airport
- During takeoff and landing

Air traffic incident reports in Australia

Baddock et al. (2013)

- Data from 1969 to 2010
- 61 incidents
- Very few occurrences of injury or damage-causing accidents
- Most incidents before 1975
- Increasing aerosol levels

Source: Baddock et al. (2013)

Air traffic incident reports in Australia

Baddock et al. (2013)

Categories of effects

- Navigation (57.4 %)
- Communication (9.8 %)
- Damage (4.9 %)
- Visibility (23.0 %)
- Other (4.9 %)

Technological advancements

- GPS units in aircraft
- Improved communication

Source: Baddock et al. (2013)

Fatal commercial aircraft crashes

Some more recent fatal aircraft crashes

- 30 January 2000:
 179 dead, Kenya Airways,
 Cote d'Ivoire
- 7 May 2002:18 dead, Egypt Air, Tunisia
- 25 May 2011:10 dead, Air Ambulance,India
- 19 August 2012:
 31 dead, Alfa Airlines,
 Antonov AN-26, Sudan

Source: https://www.indiatoday.in

Source: Middleton (2017)

Problems in aviation: Visibility

Poor visibility

Is often associated with strong winds

Visibility:

- Baddock et al. (2014):
 Relationship between dust concentrations and visibility:
 C = 4050 * V^{-1.016}
- Low visibility procedures (LVP) to ensure safe operations

Source: ICAO 2016

Problems in aviation: Visibility

- Significant delays
- Rerouting
- Flight cancellations
- Disturbances in airport operations
 - Airport ground staff (tarmac)
 - Cleanup: remove sand/dust from runways and other critical areas

AlKheder and AlKandari (2020):

 Large differences between scheduled and actual arrival and departure times during dust storms at KIA

Source:

https://www.dabangasudan.org/en/all-news/article/haboob-blankets-sudan-capital-shuts-down-airport

Problems in aviation: Visibility

Brownout

- In-flight visibility restriction due to sand or dust in the air
- Often associated with helicopter rotor downwash
- Soil composition, wind
- Accidents during nearground flights (takeoff and landing)

Source: U.S. military/Department of Defense

Problems in aviation: Wind

Albert State of the State of th

Dust devils

- Sudden changes in wind speed and direction
- Reduced visibility

Lorenz and Myers (2005):

- Review of U.S. air accident reports
- 1995 to 2005
- 97 incidents pointing to dust devils as a contributing factor
- Several fatal accidents

Source: NASA/U. of Michigan

Problems in aviation: Electrostatic charging

- Electrostatic charging due to mineral dust
- Time to reach an electrostatic equilibrium depends on soil dust particle size and concentration (for given flight speed)
- Higher particle size and concentration → shorter time
- Time is very short (some tenths of second to 3 s)
- Electrostatic charging due to soil dust is of equal importance to other sources of electrostatic charging

Electric charging can

- induce noise on the radio communications of the aircraft
- be hazardous for ground personnel or during operations (e.g., refueling)
- lead to problems to onboard electronic devices if the are not well protected

Problems in aviation: Mechanical problems – Pitot tube

Blockage of the Pitot tube

- Pitot tube (PT) measures pressure
- Pressure data are converted to air speed
- Several fatal accidents due to wrong air speed associated with tube blocking
- PT blocking caused by ice, volcanic ash, sand, insects

Source: https://imgr1.flugrevue.de/image-169FullWidth-7188a391-1442863.jpg

Source: Jackson (2015)

Problems in aviation: Icing

Nickovic et al. (2021): Ice nucleation

- Air France accident on 1 June 2009: aircraft crashed into the tropical Atlantic
- Pitot tubes were iced
- Mineral dust particles are efficient ice nuclei
- Desert dust might have played an important role
- Similar accident on 24 July 2014 (Air Algerie)
- Engine pressure ratio became erroneous because of instrument icing

Source: Wikipedia

Problems in aviation: Mechanical problems

Engine

Removes large particles

Source: Bojdo and Filippone (2019)

Problems in aviation: Mechanical problems – Erosion

Erosion of compressor blades

- Compressor: cold area of the engine
- High hardness of atmospheric dust
- Friction and impact degradation (surface damages)
- Gap size augmentation
- Leads to gas flow deterioration and gradual loss of engine performance
- Affect engine efficiency and compressor stability

Source: Szczepankowski et al. (2017)

Problems in aviation: Mechanical problems

Rotorcraft engine

Source: Bojdo and Filippone (2019)

Problems in aviation: Mechanical problems – Glass deposit

Combustor walls, turbine blades

- Combustor & turbine blades: hot area of the engine
- Glass deposit with rough surface
- Rapid loss of performance by disturbing the flow field
- Potential risk during takeoff and landing
- Deposit may also lead to thermal corrosion of an engine component or of electronic devices by blocking cooling holes

Problems in aviation: Mechanical problems – Flame out

In-flight flame out

- Glass deposit on hot areas of the engine
- Can lead to turbine blades stall
- Flame out: extinction of the flame in the combustion chamber
- KLM867 & BA009: flame out of all engines after flying through volcanic ash

Source: https://io.wp.com/theavgeeks.com/wp-content/uploads/2019/02/AE86DB53-D4AB-4440-AA58-60117028136D.png?resize=1024%2C576&ssl=1

Problems in aviation: Mechanical problems – Dust melting

Dust melting and engine temperatures

Source: Clarkson et al. (2016)

Source: Wood et al. (2017)

Problems in aviation: Mechanical problems – Dust melting

Dust composition and melting temperatures

Quartz: $T_{\text{melt}} = 1983$

Calcite: $T_{\text{melt}} = 1023 \text{ K to } 1073 \text{ K}$

Gypsum: T_{melt} = 1117 K

Maintenance costs

- High dust load for aircraft
 Paris ← → Chennai
- Highest dust load for flight JAI128 on 19 April 2018 (25 g per engine)
- Takeoff in Chennai
 - high dust concentration and
 - high fuel consumption
- Assumption:
 1 kg dust per engine
 costs between 50 000 € and
 100 000 €
 - → Up to 5000 € loss for this flight

Maintenance costs

- High dust load for aircraft
 Paris ← → Chennai
- Highest dust load for flight JAI128 on 19 April 2018 (25 g per engine)
- Takeoff in Chennai
 - high dust concentration and
 - high fuel consumption
- Assumption:
 1 kg dust per engine
 costs between 50 000 € and
 100 000 €
 - → Up to 5000 € loss for this flight

Problems in aviation: Exposure

How much ash/dust is needed to significantly damage aircraft gas turbine engines?

Problems in aviation: Summary

Dust impacts on aviation

- Reduced visibility (often associated with strong winds)
- Electrostatic charging
- Icing
- Mechanical problems:
 - Erosion
 - Corrosion
 - Blockage of cooling holes
 - Engine flame out in flight
 - Blockage of Pitot tube

H2020 project EUNADICS-AV

Key challenges

- Rare events
- High uncertainty in source terms
- Sensitivity to dispersion models
- Availability and variety of observations
- Identification of key products for stakeholders

Dust impacts on aviation

