

AeroCom Aerosol model intercomparison overview ...with an emphasis on dust

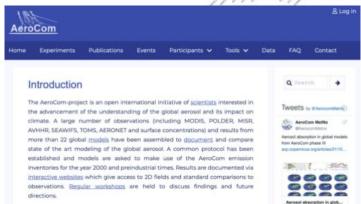
Michael Schulz Norwegian Meteorological Institute

AeroCom = Aerosol comparisons of models and observations

AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate, weather, and air quality. A central goal is to more strongly tie and constrain modeling efforts to observational data from satellite, ground-based, and aircraft observations.

A major element for exchanges between data and modeling groups are annual meetings of AeroCom together with the satellite data oriented initiative AeroSAT.

In addition to the comparisons among models and between models and data, AeroCom initiates and coordinates model experiments to target particular research topics, leading to joint research papers of synthesizing character. A common database is maintained at the Norwegian Meteorological Institute to facilitate joint scientific exploration.



AeroCom infrastructure

AeroCom

- AeroCom database and AeroCom user server
 (50 TB of model data, 300 registered users)
- New AeroCom aeroval web interface showing e.g. 2019 control Gliss et al ACP 2021, historical simulation https://aeroval.met.no/evaluation.php?project=aerocom
- aerocom.met.no website
- Email list, annual meetings, joint publications, SSC

Recent joint Publications AeroCom 2019/2020/2021

Google scholar search on "aerocom aerosol" + (2019+2020+2021) => 1240 items

AeroCom models

Sand et al. Aerosol absorption in global models from AeroCom Phase III, ACP, 2021

Su et al. Understanding top-of-atmosphere flux bias in the AeroCom phase III models: A clear-sky perspective, James, 2021

Brown et al. Biomass burning aerosols in most climate models are too absorbing. Nat Comm 2021

Schutgens et al. AEROCOM and AEROSAT AAOD and SSA study - Part 1: Evaluation and intercomparison of satellite measurements, ACP 2021

Gliss et al. Multi-model evaluation of aerosol optical properties in the AeroCom phase III Control experiment, ACP, 2021

Schutgens et al. An AeroCom/AeroSat study: Intercomparison of Satellite AOD Datasets for Aerosol Model Evaluation, ACP, 2020

Myhre et al. Cloudy-sky contributions to the direct aerosol effect, ACP, 2020

Burgos et al. A global model-measurement evaluation of particle light scattering coefficients at elevated relative humidity, ACP, 2020

Laj et al, Global analysis of climate-relevant aerosol properties retrieved from Global Atmosphere Watch (GAW) near-surface observatories AMT 2020

Kim et al, Asian and Trans-Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis, JGR Atm, 2019

Aerocom & CMIP6 models

Mortier et al. Evaluation of climate model aerosol trends with ground-based observations over the last two decades – AeroCom + CMIP6 analysis, ACP, 2020

Gryspeerdt et al. Surprising similarities in model and observational aerosol radiative forcing estimates, ACP 2020

Bellouin et al. Bounding Global Aerosol Radiative Forcing of Climate Change Rev Geo Phys, 2020

CMIP6 models

Smith et al. Energy budget constraints on the time history of aerosol forcing and climate sensitivity. JGR, 2021

Smith et al. Effective radiative forcing and adjustments in CMIP6 models, ACP, 2020

Thornhill et al. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models, ACP, 2020

Thornhill et al. Effective Radiative forcing from emissions of reactive gases and aerosols – a multimodel comparison, ACP, 2020

Moseid et al. Bias in CMIP6 models compared to observed regional dimming and brightening trends (1961–2014), ACP, 2020

Allen et al. Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, ACP, 2020

Zanis et al. Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study, ACP, 2020

Wilcox et al. Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions, ACP, 2020

Turnock et al. <u>Historical and future changes in air pollutants from CMIP6 models</u>, ACP, 2020

Acknowledgment

AeroCom SSC: Stefan Kinne, Mian Chin, Kostas Tsigaridis, Bjørn Samset, Gunnar Myhre, Duncan Watson-Parris, Yves Balkanski, Michael Schulz

WG leads: Wenying Su, Nick Schutgens, Betsy Andrews, Gunnar Myhre, Paul Ginoux, Dongchul Kim, Hongbin Yu, Mian Chin, Duncan Watson-Parris, Huisheng Bian, Florent Malavelle, Daniel Partridge, Maria Sand, Lindsay Lee, Xiaohua Pan

Website, Web interface, AeroCom user server, email list, AeroCom database, pyaerocom Anna Benedictow, Augustin Mortier, Jan Griesfeller, Jonas Gliss

Some recent results on dust ...

Comparison to AOD and coarse mode AOD Aeronet

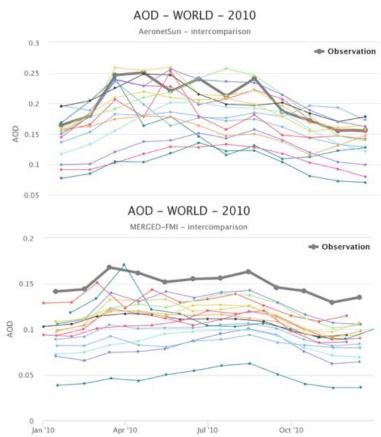
Inspection of trends

Absorption optical depth due to dust

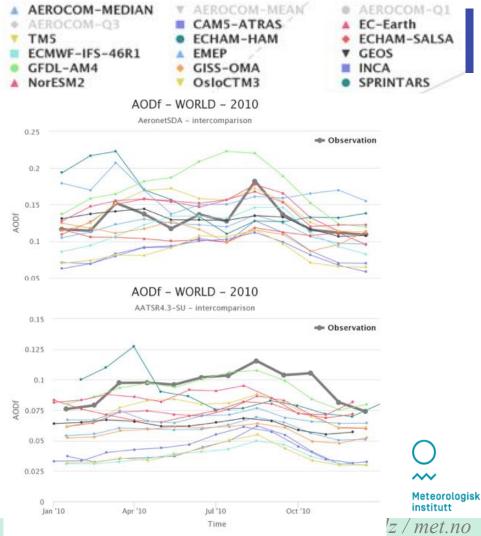
Process uncertainty in dust cycle

Size distribution of dust revisit

Climate-dust feedback

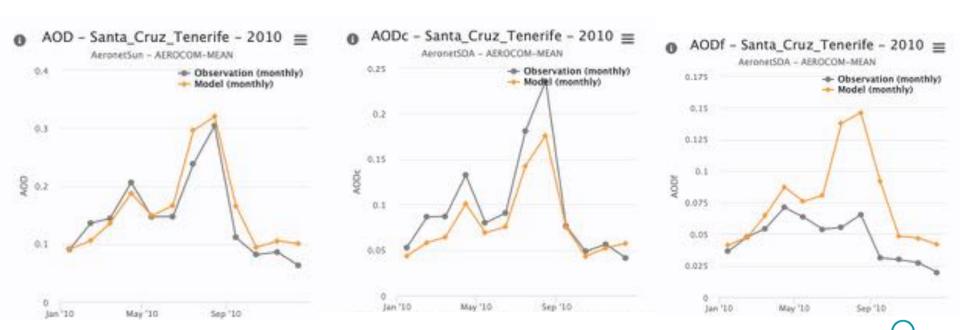


AeroCom control Gliss et al 2021


Meteorologisk

institutt

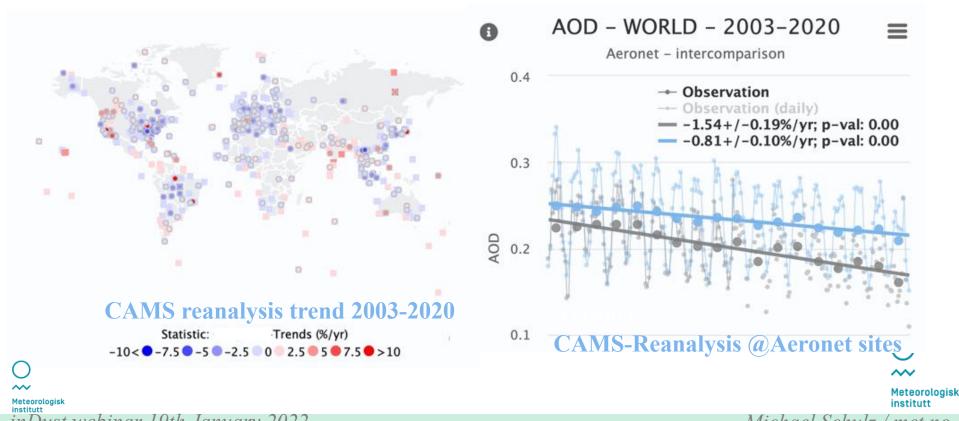
https://aeroval.met.no/overall.php?project=aerocom

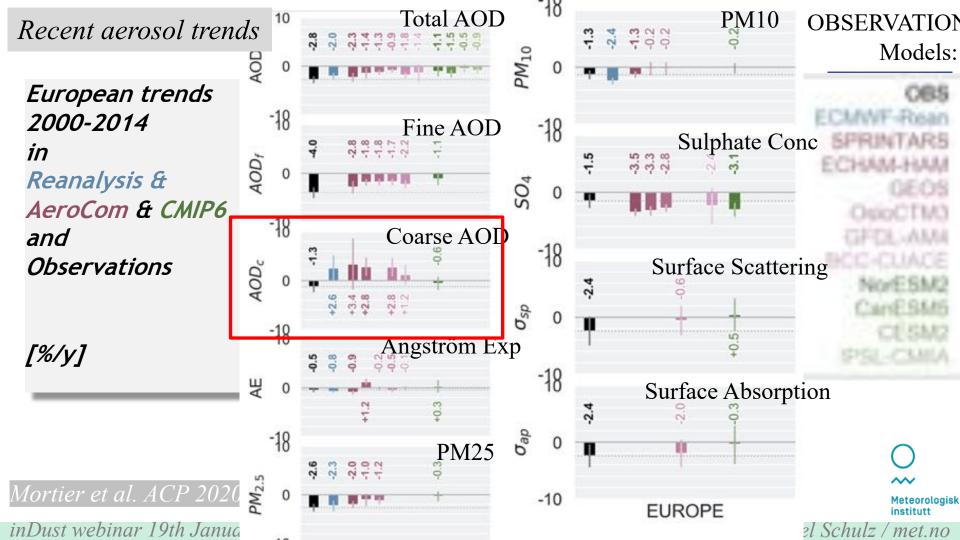


Time

AOD total, coarse, fine in Tenerife

AeoCom mean versus Aeronet (from aeroval.met.no interface)

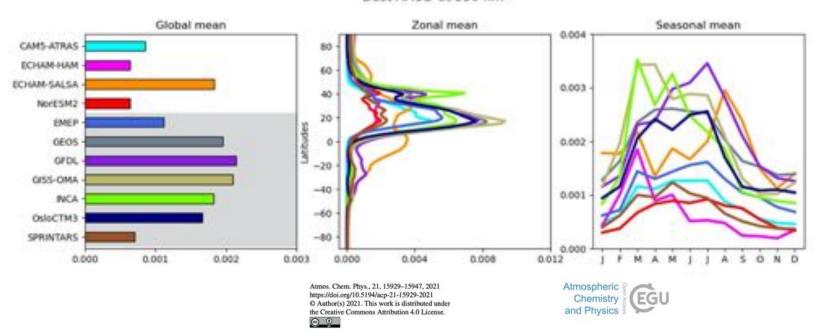



AeroCom control historical trend evaluation last decades since 2000

https://aeroval.met.no/overall.php?project=aerocom

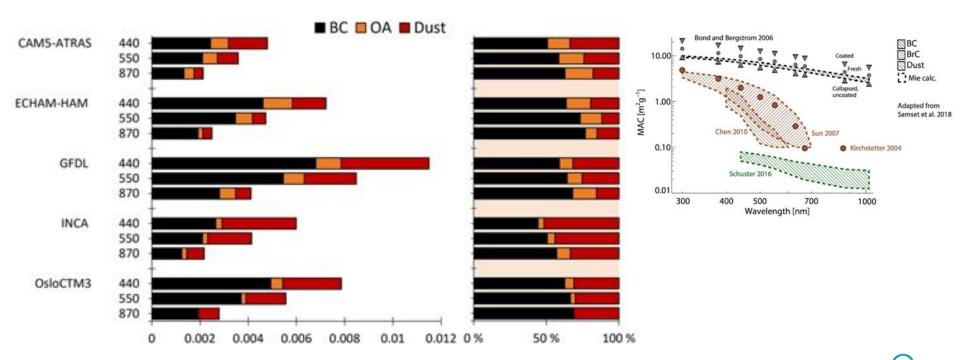
From aeroval Aerocom web interface to model evaluation of trends (work in progress)

AeroCom



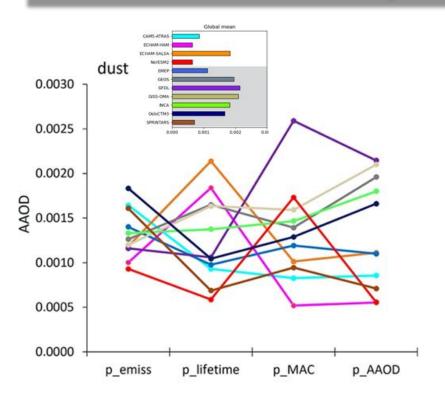
Dust absorption optical depth

Dust AAOD at 550 nm

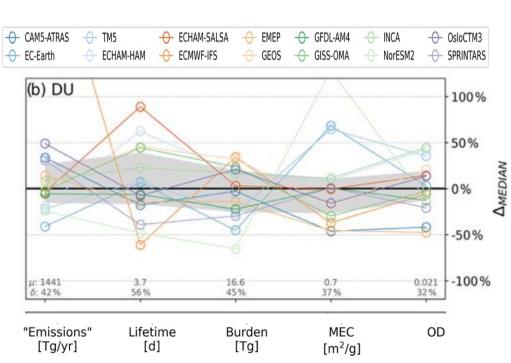

Aerosol absorption in global models from AeroCom phase III

Maria Sand¹, Bjørn H. Samset¹, Gunnar Myhre¹, Jonas Gliß², Susanne E. Bauer^{3,4}, Huisheng Bian^{5,6}, Mian Chin⁶, Ramiro Checa-Garcia², Paul Ginoux⁵, Zak Kipling⁹, Alf Kirkevåg², Harri Kokkola¹⁰, Philippe Le Sager¹¹, Marianne T. Lund¹, Hitoshi Matsui¹², Twan van Noije¹¹, Dirk J. L. Olivie², Samuel Remy¹³, Michael Schulz², Philip Stier¹⁴, Camilla W. Stjern¹, Toshihiko Takemura¹³, Kostas Tsigaridis^{4,3}, Svetlana G. Tsyro², and Duncan Watson-Parris¹⁴

Role dust absorption for total aerosol absorption

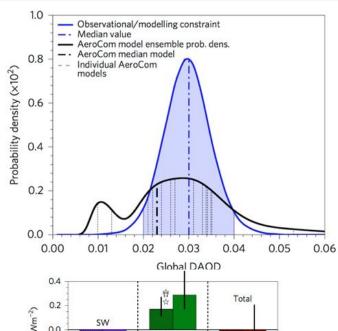

Global mean AAOD at λ = 440, 550, and 870 nm for each model split into BC (black), OA (orange), and dust (red)

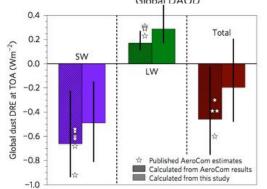
Sand et al. ACP 2021

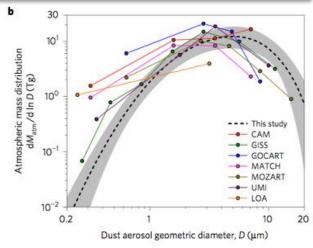


Partial sensitivities / Impact on Dust AAOD, AOD

Sand et al. ACP 2021




Gliss et al. ACP 2021



Recommendations for modelling...

Constraints suggest that AeroCom models

- emit too fine dust
- underestimate extinction, assuming sphericity
- underestimate Dust AOD
- => More dust absorption, more LW, less SW, less net radiative effect

Smaller desert dust cooling effect estimated from analysis of dust size and abundance

met.no

Jasper F. Kok¹*, David A. Ridley², Qing Zhou³, Ron L. Miller⁴, Chun Zhao⁵, Colette L. Heald^{2,6}, Daniel S. Ward⁷, Samuel Albani⁸ and Karsten Haustein⁹

Dust feedback in a changed climate? AerChemMIP

ERFdust

Dust Emissions under 4xCO2

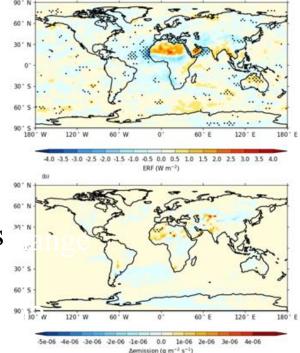
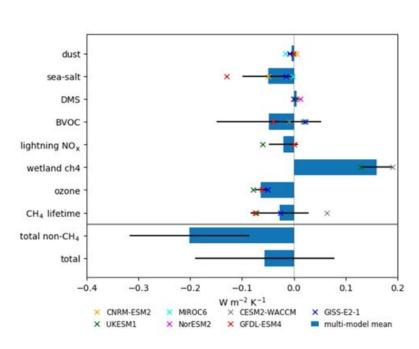



Figure 1. Multi-model mean (a) ERF from piClim-2xdust vs. piClim-control, (b) change in dust emissions for abrupt-4xCO2 vs. piControl. Stippling shows areas where the mean changes by more than the standard deviation across models.

Thornhill et al. ACP 2021

How to better constrain the simulated aerosol effect

on climate and air quality?

Constrain models to range of observed parameter values

Commission on constraining aerosol properties TAO group **Model recommendations**

Study sensitivity to process uncertainty

PPE+emulators AeroCom WGs Individual model studies AeroCom aerosol module **Transport Tracers**

Score with observations

Representation error Trend understanding Reference: Aerocom Median / Re-analysis Observational benchmarks cis-tools / pyaerocom **Multi-model papers**

AeroCom

Meteorologisk

inDust webinar 19th January 2022

Michael Schulz / met.no

Selected current activities

Dust source attribution experiment

Trans-Atlantic dust experiment

Commission on constraining aerosol properties

Code exchange and generalised aerosol-chemistry interface

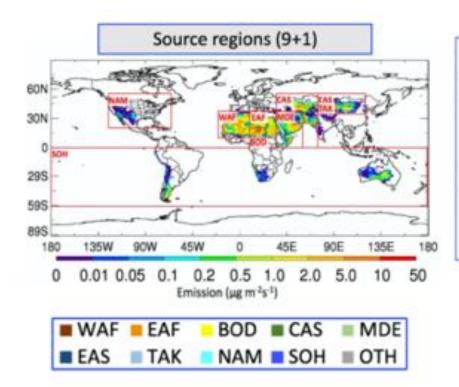
Dust Source Attribution experiment DUSA

Assessment of dust source attribution to the global land and ocean regions

(Aerocom3-DUSA Experiment Update)

October 11, 2021, Aerocom workshop

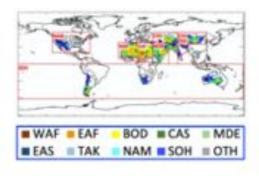
Dongchul Kim¹, Mian Chin², Greg Schuster³, Toshihiko Takemura⁴, Paolo Tuccella⁵, Paul Ginoux⁶, Yang She⁷, Xiaohong Liu⁷, Hitoshi Matsui⁸, and Kostas Tsigaridis^{9,10}


GESTAR/NASA Goddard Space Flight Center, Greenbelt, MD, United States
 NASA Goddard Space Flight Center, Greenbelt, MD, United States
 NASA Langley Research Center, Hampton, VA, United States
 Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
 University of L'Aquila, L'Aquila, Italy
 NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
 Texas A&M University, College Station, TX, United States
 Nagoya University, Nagoya, Japan
 Center for Climate Systems Research, Columbia University, New York, NY, USA
 NASA Goddard Institute for Space Studies, New York, NY, USA

institutt

DUSA source regions

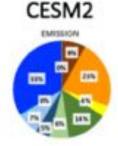
- Source regions (9+1)
- Receptor regions (14 = L7+O7)
- Participating models (6):
 - · GEOS, SPRINTARS, GEOS-chem
 - GFDL, CAMS, CESM2 (new 2021))
- Period: 4 years (2009-2012)
- Models also provide DOD 10um (separate talk, October 14, 11 UTC)

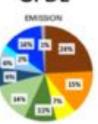

Courtesy Dongchul Kim

DUSA global budgets

Source contribution in global scale (annual)

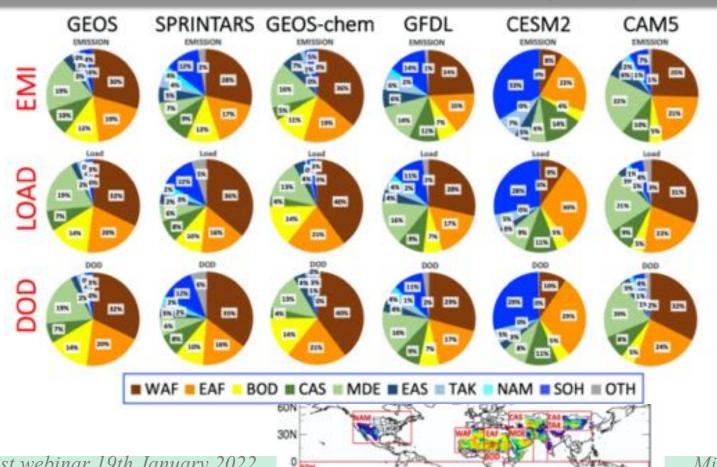
	Unit	GEOS	SPRINT ARS	GEOS- chem	GFDL	CESM2	CAM5
EMI	Tg yr1	1417	2278	1130	1578	2826	4311
LOAD	Tg yr1	20.8	22.7	21.9	28.7	61.9	67.0
DEP	Tg yr1	1418	2084	1132	1595	2929	4531
DOD	none	0.025	0.017	0.012	0.022	0.034	0.027
PM2.5	µgm ⁻³	1.6	1.0	2.1	3.6	0.9	5.2


EMI


GEOS SPRINTARS GEOS-chem

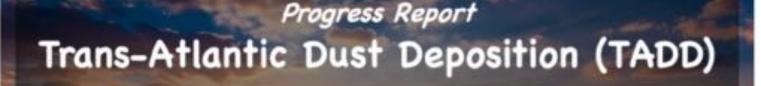
20%

12%

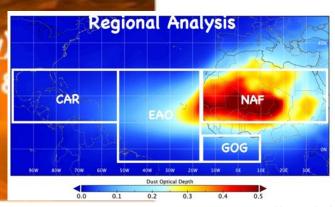


Meteorologisk institutt

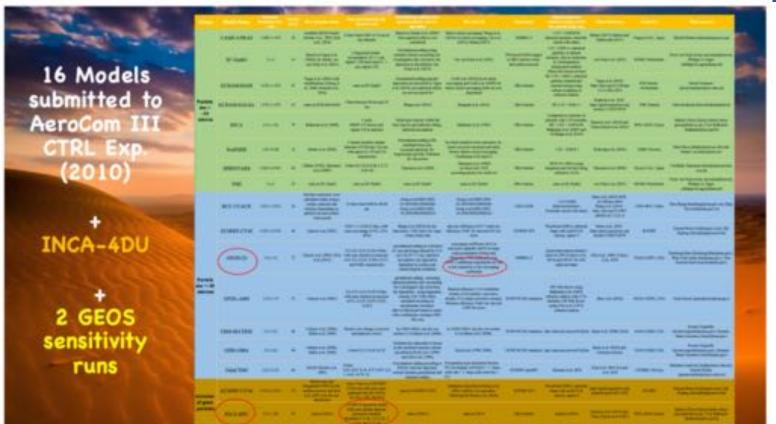
DUSA source contribution to emission, load, DOD



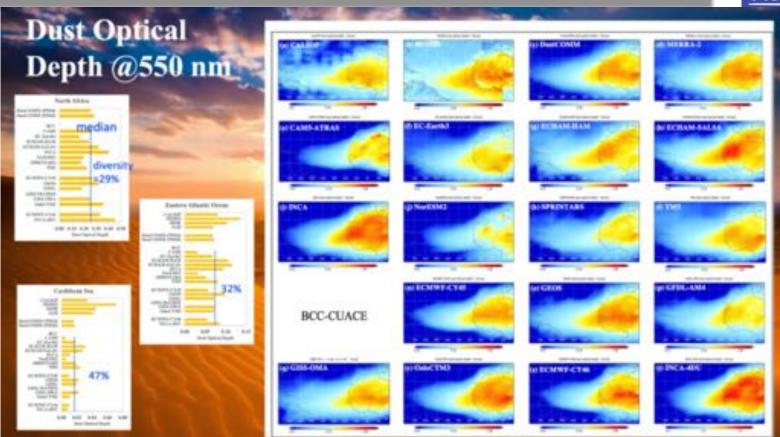
Trans Atlantic Dust Experiment (TADD)



Objective: To identify major model deficiencies in simulating the trans-Atlantic dust transport and deposition through comparisons against a range of satellite and surface observations

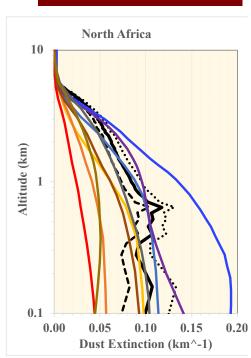

Hongbin Yu (<u>Hongbin.Yu@nasa.gov</u>)
with contributions from many modelers a
providers

20th AeroCom Workshop, October 11, 2021

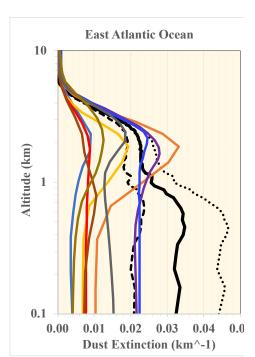

Meteorologisk institutt

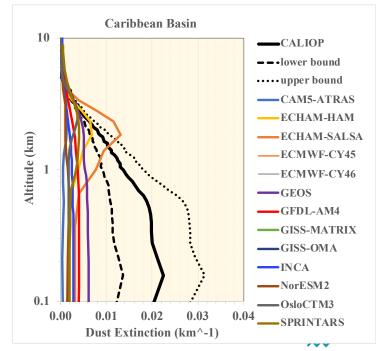
institutt

Hongbin



institutt


TADD comparison to CALIOP profiles


North Africa

E. Atlantic

Caribbean Basin

Courtesy: Hongbin and Qianquin / NASA Goddard

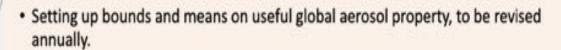
Meteorologisk institutt

AeroC

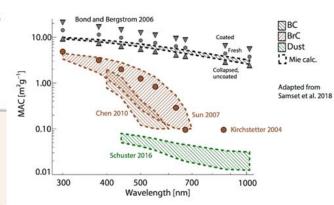
AeroCom Phase (AP)		Emissions (Tg/yr)	Deposition (Tg/yr)	f_wet	Lifetime (d)	Mass Loading (Tg)	MEE (m2/g)	DOD
AP1	Median	1628	1627	0.35	4.05	19.8	0.69	0.030
Huneeus et al. (2011)	Diversity	61%	59%	44%	37%	39%	49%	38%
AP3	Median	1437	1434	0.45	3.71	16.6	0.74	0.022
	Diversity	139%	141%	52%	50%	47%	46%	24%
AP3 – excluding ECMWF-CY46 & INCA-4DU	Median	1397	1379	0.46	3.97	15.4	0.74	0.022
	Diversity	30%	33%	42%	42%	32%	41%	24%

AP3 models have much larger spread in emissions, deposition than AP1 models, simply due to the inclusion of super coarse/giant particles in two models (ECMWF-CY46 and INCA-4DU).

Meteorologisk institutt


Hongbin

Courtesy:


Commission on Constraining Aerosol Properties

Yves Balkanski, Lucia Mona, Betsy Andrews, Nicolas Bellouin, Ken Carslaw, Mian Chin, Peter Colarco, Ed Gryspeerdt, Paola Formenti, Stefan Kinne, Gerrit de Leew, Claudia Di Biagio, Roy Grainger, Ralph Kahn, Pekka Kolmonen, Rob Levy, Tero Mielonen, Thanos Nenes, Thomas Popp, Adam Povey, Claire Ryder, Andrew Sayer, Lauren Schmeisser, Michel Schulz, Greg Schuster, Nick Schutgens,

- What should models and satellite retrievals be able to simulate/retrieve in relation to global aerosol loads and optical properties?
- · What should be recommended to modellers/satellite scientists to test and document?
- Bounds and means on these properties and on aerosol radiative effects could suggest strategies for future observations

Aerosol codes available for inspection

CESM-MAM3+MAM7 / ?? / https://github.com/ESCOMP/CAM EMEP / Simpson 2012 / https://github.com/metno/emep-ctm

NorESM/CAM6NOR & aerotab / Seland 2020 / https://github.com/NorESMhub/NorESM

GFDL AM4 / Zhao 2018 / https://github.com/NOAA-GFDL/AM4

GISS OMA/MATRIX / / ??

IPSL-CM5A2 / Sepulchre 2020 / svn checkout?

GOCART/GEOS / ?? / on request)

ECHAM6-HAMMOZ / Tegen 2019 / available under ECHAM licence agreement

ECHAM-SALSA / Kokkola 2018 / under ECHAM license

EC-EARTH3/TM5 / von Noije in prep / restricted acces to consortium

IFS-ECMWF / Remy 2019 / access granted for European MET services

GLOMAP/UKESM / ?? / ?

E3SM-MAM4 / Wang 2020 / https://e3sm.org/model/ github available to collaborators

CNRM-ESM2-1 / Seferian 2019 / ?

CAM5-ATRAS / Matsui 2017 / ?

Code exchange / Common aerosol interface

Planned and upcoming:

Virtual workshop on developing a general set of requirements for aerosol/chemistry interfaces within weather/climate models
Wednesday Feb 16 from 12-3pm Eastern US Time

Contact mahowald@cornell.edu, alma@ucar.edu

Thanks for the attention

aerocom.met.no michael.schulz@met.no

