Satellite monitoring of airborne dust

Enric Terradellas, AEMET, Barcelona, eterradellasj@aemet.es

7 Training Course on WMO SDS-WAS Products, Ahvaz, Iran, 10-14 November 2018

What kind of satellites is suitable for dust monitoring? Polar vs GEO satellites

What kind of satellites is suitable for dust monitoring? Polar vs GEO satellites

Terra/MODIS & Aqua/MODIS Natural colour. 18 Feb 2017

₽ EUMETSAT

Meteosat IODC Dust, 2017-03-19 00:00:00 UTC

MSG/SEVIRI RGB-Dust. 19 Mar 2017

Operational GEO meteorological satellites

Satellite	Location	Operated by
GOES-15	135°W	NOAA
GOES-16	75.2°W	NOAA
Meteosat-11	0°	EUMETSAT
Meteosat-10	9.5°E	EUMETSAT
Meteosat-8	41.5°E	EUMETSAT
INSAT-3DR	74ºE	ISRO
Electro-L N2	76ºE	RossHydroMet
FY-2H	79°E	CMA
FY-2G	105°E	CMA
FY-4A	105°E	CMA
COMS	128.2°E	KMA
Himawari-8	140.68°E	JMA

Products of what GEO satellite are useful in West Asia? MSG 0° vs MSG 41.5°?

Which satellite products are useful for dust monitoring? Visible vs Infrared channels

Infrared or Terrestrial or Longwave or Thermal

Which satellite products are useful for dust monitoring? Visible vs Infrared channels

Which satellite products are useful for dust monitoring? Visible vs Infrared channels

EUMETSAT RGB products

IR 12.0 - 10.8 µm

IR 10.8 - 8.7 µm

IR 10.8 µm

© EUMETSAT / The COMET Program

Red component: Rad@12.0 - Rad@10.8. The goal is to distinguish dust and water clouds

Water / Ice : BT (12.0) < BT (10.8) No Red Dust / Ash : BT (12.0) > BT (10.8) Red

Red: IR 12.0 – IR 10.8 Range of values: - 4 ... + 2 K So full Red means BT(IR12.0) - BT(IR10.8) = + 2 K

Dust RGB

Green component: Rad@10.8 - Rad@8.7. The goal is to distinguish airborne dust and desert soils

Deserts BT 10.8 > BT 8.7 Green

Dust BT 10.8 = BT 8.7 **No Green**

Blue component: Rad@10.8

By night, it allows estimating height of dust cloud

Blue: IR 10.8 Range of values: -12ºC ... 16ºC

Diurnal variation of temperature

Desert by night

Desert by day (higher temperature → higher blue contribution)

Diurnal variation of temperature

Desert by night

Desert by day (higher temperature → higher blue contribution)

... but mountains can remain relatively cold \rightarrow low blue contribution

Diurnal variation of temperature

Meteosat IODC Dust, 2018-10-18 00:00:00 UTC

Other features

Cold thick high-level clouds Cold thin high-level clouds, contrails Thick mid-level cloud

Other features

Contrails can sometimes be dark blue

Other features

Thin (semi-transparent) mid-level cloud Thick mid-level cloud

Other features

Other features

Cloud-free vegetated surface in a warm day

Hot sandy desert (left)

Cold sandy desert (right)

Cloud-free vegetated surface in a cold summer night

