به نام خدا

Monitoring of Dust Optical Characteristics Using Remote Sensing Instruments

Dr. Khan Alam khanalam@uop.edu.pk

department of Physics University of Peshawar

7th Training Course on WMO SDS-WAS Products, Ahvaz, Iran (10-14 Nov, 2018)

- Impacts of dust storms
- Satellite remote sensing
- Remote sensing instruments
- Aerosol optical properties
- Satellite & ground data validation

Variation in Aerosol Characteristics during Dust

Department of Physics, University of Peshawar.

Classification of Atmospheric Aerosols

Aerosol Types

Dust aerosols

• Coarse particles probably consist of a mixture of quartz and clay minerals produced in arid regions

Biomass burning aerosols

• Fine particles mainly consist of black carbon and organic aerosols probably produced from natural or manmade fires

Urban/industrial aerosols

• Fine particles mainly consist of anthropogenic aerosols produced in urban and industrial regions

Dust characteristics

 Dust storms occasionally reach up to 1km | 5km | 10km height, and are as thick as 100m | 2km | 5km

Over land, dust optical depth is typically around 0.1 | 0.5 | 1 or 2 | 5 for storms, in the visible range.

Dust absorbs and scatters infrared radiation in the Mie | Rayleigh | optical region

Effects of Aerosols

Introduction

Sources of Dust Emissions: 3 major types

Anthropogenic sources

(Dust from unpaved road)

Agricultural sources (Dust from crop land)

Natural desert sources

World's Largest Deserts

Terra/MODIS True Colour View of Earth

Biogeochemical processes Dust injects nutrients, such as iron, into marine ecosystems

Direct radiative forcing by dust aerosols (Direct effect)

Impacts of dust storm

Dust causes increased reflection of sunlight

Dark Surface (e.g. Ocean)

Dust causes decreased reflection of sunlight

Bright Surface (e.g. Desert)

Department of Physics, University of Peshawar.

Impacts of aerosol on cloud

Aerosol – Cloud Interactions

Indirect effect: aerosol-cloud effect

IPCC report, 2007

Impacts of aerosol on cloud

How can humans affect clouds?

By changing CCN; cloud properties are a *strong* function of their concentration. This phenomenon is known as aerosol indirect effect.

The aerosol indirect effect can lead to *climatic cooling* by:

- Increasing cloud reflectivity (albedo)
- Increasing cloud lifetime & coverage.

Higher Albedo

Polluted Environment

Department of Physics, University of Peshawar.

Climatic Effects of Aerosols

Dust indirect effect was evidenced by observation

Dust Aerosol, as Cloud condensation nuclei (CCN), can change cloud microphysical property, cloud fraction and cloud lifetime, thus can indirectly influence the radiation budget of the earth-atmosphere system.

Climatic Effects of Aerosols

Semi-direct effect may contribute to arid climate

Dust Aerosols' semi-direct effect can increase droplet evaporation, reduce liquid water path by 49.8%, lead to less precipitation.

Human Health Effect of Aerosols

Remote Sensing

Basics of Satellite Remote Sensing

Collecting information about an object without being in direct physical contact with it.

- Remote Sensing:
 - The art and science of obtaining information about an object without physically contact between the object and sensor
 - The processes of collecting information about Earth surfaces and phenomena using sensors not in physical contact with the surfaces and phenomena of interest.
 - There is a medium of transmission involved i.e. Earth's Atmosphere.

Satellite Remote Sensing

Applied Sciences Program

Applications to Decision Making: Thematic Areas

Public Health

Weather

Department of Physics, University of Peshawar.

Resources

Satellite Remote Sensing

What does satellite measures ?

Reference: CCRS/CCT

Department of Physics, University of Peshawar.

Remote Sensing Process

Satellite Remote Sensing

Remote Sensing Process Components

Energy Source or Illumination (A)

Radiation and the Atmosphere (B)

Interaction with the Target (C)

Recording of Energy by the Sensor (D)

Transmission, Reception, and Processing (E)

Interpretation and Analysis (F)

Application (G)

- UV: some absorptions + profile information+ aerosols
- VIS: surface information (vegetation)+some absorptions+ aerosol
- IR: temperature information + cloud information+ water / ice distinction
- +many absorptions / emissions + profile information
- MW: no problems with clouds+ ice / water contrast+ surfaces + some emissions + profile information

Resolution

- <u>All</u> remote sensing systems have <u>four types</u> of resolution:
 - Spatial
 - Spectral
 - Temporal
 - Radiometric

Fundamental in Remote Sensing: Spatial Resolution

- The earth surface area covered by a pixel of an image is known as spatial resolution
- Large area covered by a pixel means low spatial resolution and vice versa

Fundamental in Remote Sensing: Spectral Resolution

- Is the ability to resolve spectral features and bands into their separate components
- More number of bands in a specified bandwidth means higher spectral resolution and vice versa

- Frequency at which images are recorded/ captured in a specific place on the earth.
- The more frequently it is captured, the better or finer the temporal resolution is said to be
- For example, a sensor that captures an image of an agriculture land twice a day has better temporal resolution than a sensor that only captures that same image once a week.

Fundamental in Remote Sensing: Radiometric Resolution

- Sensitivity of the sensor to the magnitude of the received electromagnetic energy determines the radiometric resolution
- Finer the radiometric resolution of a sensor, if it is more sensitive in detecting small differences in reflected or emitted energy

Some of the ways satellites/sensor can be classified

• Orbits

- Polar vs Geostationary
- Energy source
 - Passive vs Active ...

• Solar spectrum

- Visible, UV, IR, Microwave ...
- Measurement Technique
 - Scanning, non-scanning, imager, sounders ...
- Resolution (spatial, temporal, spectral, radiometric)
 - Low vs high (any of the kind)

• Applications

• Weather, Ocean colors, Land mapping, Atmospheric Physics, Atmospheric Chemistry, Air quality, radiation budget, water cycle, coastal management ...

Common types of orbits

Geostationary orbit An orbit that has the same Earth's rotational period Appears 'fixed' above earth Satellite on equator at ~36,000km

Polar orbiting orbit fixed circular orbit above the earth, ~600-1000km in sun synchronous orbit with orbital pass at about same **local solar time** each day

Path of Satellite

Ascending Orbit: The satellite is moving South to North when that portion of the orbit track crosses the equator.

Polar Orbits

Ascending vs Descending

Descending Orbit: The satellite is moving North to South when that portion of the orbit track crosses the equator.

Passive Sensors: Remote sensing systems which measure energy that is naturally available are called passive sensors.

MODIS, MISR, OMI

Active Sensors: The sensor emits radiation which is directed toward the target to be investigated. The radiation reflected from that target is detected and measured by the sensor.

CALIPSO

Remote Sensing Instruments

Ground based instruments

AErosol RObotic NETwork (AERONET)

Satellite based instruments

MODerate resolution Imaging Spectroradiometer (MODIS)

Ozone Monitoring Instrument (OMI)

Multiangle Imaging SpectroRadiometer (MISR)

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)

AERONET/Sunphotometer

- AErosol RObotic NETwork
- Worldwide collection of sun photometers

AERONET

- AERONET provides global observations of spectral aerosol optical depth (AOD), inversion products, and precipitable water.
- The direct sun measurements are made in eight spectral bands requiring approximately 10 seconds at wavelengths of 340, 380, 440, 500, 670, 870, 940 and 1020 nm
- The 940 nm channel is used for column water abundance determination
- Quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud-screened and quality-assured).

MODIS Instrument

- Moderate Resolution Imaging Spectroradiometer (MODIS)
 - NASA, Terra & Aqua
 - launched 1999, 2002
 - 705 km polar orbits, descending (10:30 a.m.) & ascending (1:30 p.m.)
 - Sensor Characteristics
 - 36 spectral bands ranging from 0.41 to 14.385 μm
 - cross-track scan mirror with 2330 km swath width
 - Spatial resolutions:
 - ▶ 250 m (bands 1 2)
 - > 500 m (bands 3 7)
 - 1000 m (bands 8 36)

MODIS Aerosol Products

Ocean

Three Separate Algorithms

MODIS Levels of Data

January 12, 2013

MODIS Aerosol Products

Understanding a MODIS File Name

• MODIS Level 2 data

https://lpdaac.usgs.gov/about/news_archive/echo_announces_release_reverb

• MODIS Level 3 data

Giovanni – web tool for imagery visualization and analysis

https://giovanni.gsfc.nasa.gov/giovanni

• MODIS Subsets

https://earthdata.nasa.gov/earth-observation-data/near-real-time/rapid-response/ modis-subsets

Ozone Monitoring Instrument

Instrument Characteristics -Nadir solar backscatter spectrometer

-Spectral range 270-500 nm (resolution~1nm)

-Spatial resolution: 13X24 km footprint

-Swath width: 2600 km (global daily coverage)

One of four sensors on the EOS-Aura platform (OMI, MLS, TES, HIRDLS)

An international project: Holland, USA, Finland Launched on 07-15-04

Retrieval Products

Column Amounts -Ozone (O₃) -Nitrogen Dioxide (NO₂) -Sulfur Dioxide: (SO₂) -Others

Aerosols

OMI data

OMI data site

http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI

Version 003 OMI Level 2, Level 2G, Level-3 and Climatology Products			
Short Name & Data Access			
Level-2 Orbital Swath (Nadir pixels 13x24 km)	Level-2G Global Binned (0.25x0.25 or 0.125x0.125 deg)	Level-3 Global Gridded (0.25x0.25 or 1x1 deg)	Product Description
Aerosols			
OMAERUV	<u>OMAERUVG</u>	OMAERUVd	OMI/Aura Near-UV Aerosol Optical Depth and single Scattering Albedo
OMAERO	OMAEROG	OMAEROe	OMI/Aura Multi-Wavelength Aerosol Optical Depth and single Scattering Albedo

Department of Physics, University of Peshawar.

Cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO)

Cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO)

- ➤ The CALIPSO satellite was launched on April 28, 2006, with equator crossing times of about 13:30 and 01:30 and a 16-day repeating cycle
- It gives the distribution of aerosols and clouds in vertical atmospheric profiles on the global/regional scale
- It carries a Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument that operates at two wavelengths (532 nm and 1064 nm)
- CALIPSO satellite discriminates the different aerosol types including clean marine, dust, polluted continental, clean continental, polluted dust and smoke https://www-calipso.larc.nasa.gov/

Aerosol Optical Depth (AOD) and Angstrom Exponent (AE)

$$AOD(\lambda) = \int_{h_1}^{h_2} \beta_{ext,\lambda}(\mathbf{h}) d\mathbf{h}$$

AOD represents the total extinction of solar radiation caused by aerosol via scattering or absorption

AE measures the aerosol size distribution

$$\begin{array}{c} \mathbf{AE} = -\frac{\mathbf{M}}{\mathbf{AE}} \begin{bmatrix} \mathbf{AOD} \begin{pmatrix} \mathbf{A} \end{pmatrix} \end{bmatrix} \\ \mathbf{AE} = -\frac{\mathbf{M}}{\mathbf{AE}} \begin{bmatrix} \mathbf{AOD} \begin{pmatrix} \mathbf{A} \end{pmatrix} \end{bmatrix} \\ \mathbf{AE} \end{bmatrix} \\ \mathbf{AE} = -\frac{\mathbf{M}}{\mathbf{M}} \begin{bmatrix} \mathbf{AOD} \begin{pmatrix} \mathbf{A} \end{pmatrix} \end{bmatrix} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \\ \mathbf{M} \end{bmatrix} \\ \begin{array}{c} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \\ \mathbf{M} \end{bmatrix} \\ \begin{array}{c} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \\ \mathbf{M} \\ \mathbf{M} \end{bmatrix} \\ \mathbf{M} \\ \mathbf{M} \end{bmatrix} \\ \mathbf{M} \\ \mathbf{M}$$

AE is the size indicator of aerosol particle

Aerosol Index (AI)

AI separates the absorbing from non-absorbing aerosols in UV region

• AI > 0 for totally absorbing particles

AI < 0 for purely scattering particles</p>

Fine Mode Fraction (FMF) and Coarse Mode Fraction (CMF)

Fine mode aerosols: 0.1 to 0.25μm
Coarse mode aerosols: 1.0-2.5μm

FMF/CMF of AOD is the fraction of fine/coarse mode AOD to the total AOD

$$FMF = \frac{AOD_{fine \ mode}}{AOD_{total}}$$

$$\mathsf{CMF} = \frac{\mathsf{AOD}_{\mathsf{coarse mode}}}{\mathsf{AOD}_{\mathsf{total}}}$$

FMF gives information about the size

distribution
FMF = 0 for single coarse mode particle
FMF = 1 for single fine mode particle

Single Scattering Albedo (SSA)

Scattering

SSASSAhis their atformation of the second sector to tal or the second sector <math>to tal or the second second sector <math>to tal or the second second sector <math>to tal or the second secon

$$SSA = \frac{Qscat}{Qext} = \frac{Qscat}{Qscat + Qabs}$$

- SSA is used to distinguish absorbing from nonabsorbing aerosols
 - SSA= 0 for totally absorbing (dark) particles

SSA = 1 for purely scattering particles

Atmospheric Forcing

- In order to understand how the Earth's climate is changing, it is critical to make sense of each mechanism that causes warming or cooling in the atmosphere
- Each process that changes the balance of radiation coming into and going out of the Earth-Atmosphere system is known as atmospheric forcing
- The long wave (LW) and shortwave (SW) radiative forcing at the surface are important components of the Earth's radiation balance

Radiative Transfer Equations

- Once the solutions for the hemispheric intensities are known, it is easy to calculate hemispheric fluxes by performing the angular integrations
- Assumes that there is no dependency on φ in a plane-parallel atmosphere

The **total net flux** can be defined as:

 $F_{net} < 0$

 $F_{net} > 0$

$$F_{net} = F^{\uparrow} - F^{\downarrow}$$

cooling the atmosphere

heating the atmosphere

Aerosol Radiative Properties

Aerosol Radiative Forcing (ARF)

The Aerosol radiative forcing at the TOA and the surface is obtained as the difference between

Analysis of Aerosol Optical Properties

MODIS Aerosol Optical Depth Product

MOD04 or MYD04

- 10 km instantaneous 01 deg – daily, weekly, monthly
- At least two daytime overpasses -Terra and Aqua
- Sensitive to Boundary Layer
 Industrial, smoke & dust aerosols
- Well validated over land

Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) on Dusty Days

Monthly Averaged Variability of AOD and AE

High AOD with low AE during summer and pre-

High AOD with high AE during winter and post-monsoon

Department of Physics, University of Peshawar.

Evidence of Dust by MODIS in the Himalayan foothills

Dust Transport from Hamoun Wetlands

Dust Transport over the Arabian Sea

Department of Physics, University of Peshawar.

Dust over Iran & Pakistan

Satellite/Sensor Imagery

Doing More with Satellite Imagery (Climate studies)

If we understand the physics of how particular wavelengths interact with objects in the world we can create images to emphasize what we want to see

In visible imagery water is dark because it absorbs most of the energy.

Clouds are white because most of the incoming energy is reflected

Pollution is hazy depending upon its absorptive properties

Features In True Color Image (Atmosphere)

Satellite/Sensor identification feature

Identify Feature

Aerosol Index

-Validation tool for transport models

-Separation of carbonaceous from sulfate aerosols

-Identification of aerosols above PBL (i.e., PBL aerosols are not detectable by AI)

-Tracking of aerosol plumes above clouds and over ice/snow

Aerosol s over clouds: April 14, 2006

Aerosol Index

Aerosol Transport across the Oceans in terms of the Absorbing Aerosol Index

Satellite & Ground data validation

- An intercomparison of AOD values from different sensors is necessary if a long-term database for climatological studies is to be established
- To improve the accuracy and the coverage achievable with a single sensor
- AERONET AOD values (at 500 nm) were interpolated at common wavelength of 550 nm, using power law:

$$AOD_{550nm} = AOD_{500nm} \left(\frac{550}{500}\right)^{-\alpha}$$

where α is the (440–870 nm) Angstrom exponent

Intercomparision of Satellite and AERONET AOD

Department of Physics, University of Peshawar.

Intercomparision of Satellite and AERONET AOD

MODIS vs. MISR

MODIS vs. MISR

Alam et al., 2011

Department of Physics, University of Peshawar.

Satellite Data Validation

Wallow Fire (Near Springerville, Arizona)

MODIS Terra 9 hours later

Dust Characteristics over Karachi

Variation in Aerosol Optical Depth during dusty and non dust days

Department of Physics, University of Peshawar.

Volume Size Distribution

Department of Physics, University of Peshawar.

Single Scattering Albedo

Department of Physics, University of Peshawar.

CALIPSO Total Attenuated Backscatter

CALIPSO: Depolarization Ratio

Department of Physics, University of Peshawar.

CALIPSO: Aerosol Classification

Schematic Diagram of Shortwave Radiative Forcing using SBDART Model

Aerosol Radiative Forcing and Heating Rates

Dust Characteristics over the Middle East & Southwest Asia

Alam, K., Trautmann, T., Blaschke, T., Subhan, F. (2014). Changes in aerosol optical properties due to dust storm in the Middle East and Southwestern Asia. Remote Sensing of the Environment, 143, 216-227

Dust in Middle East and Southwest Asia

Department of Physics, University of Peshawar.

Formation of Dust events and Meteorological situation

Aerosol Transport through HYSPLIT model

Department of Physics, University of Peshawar.

Dust detection through Satellite

Results & Discussion: Aerosol Optical Depth Variations

Results & Discussion: Aerosol Optical depth variations

Department of Physics, University of Peshawar.

Aerosol sub-type classification

N/A = not applicable; 1= clean marine; 2 = dust; 3 = polluted continental; 4 = clean continental; 5 = polluted dust; 6 = smoke

Results & Discussion

Results & Discussion

Department of Physics, University of Peshawar.

Results & Discussion

Classification of Aerosols

Monthly Averaged Variability of AOD and AE

High AOD with low AE during summer and pre-

High AOD with high AE during winter and post-monsoon

Department of Physics, University of Peshawar.

Seasonal Averaged Variability of AVSD

High coarse-mode peak in summer and pre-monsoon

Seasonal Averaged Variability of SSA

Department of Physics, University of Peshawar.

Seasonal Averaged Variability of SSA

Smoke/Haze

Volume size distribution

Department of Physics, University of Peshawar.

Seasonal Averaged Variability of SSA

Relationship between FMF and AE

Aerosol types	FMF vs. AE	
Mostly Dust	0.4 <fmf>0.1</fmf>	0.4 <ae>0.0</ae>
Mostly BC	1.0 <fmf>0.7</fmf>	1.5 <ae>1.0</ae>
Mixed BC & Dust	0.7 <fmf>0.4</fmf>	1.0 <ae>0.4</ae>

Classification of Aerosol

Relationship between AE and AI

Aerosol types	AE vs. AI	
Mostly Dust	0.4 <ae>0.0</ae>	5.0 <ai>1.57</ai>
Mostly BC	1.50 <ae>0.92</ae>	1.52 <ai>0.44</ai>
Mixed BC & Dust	1.0 <ae>0.0</ae>	1.55 <ai>0.5</ai>

Relationship between FMF and AI

Aerosol types	FMF vs. AI	
Mostly Dust	0.3 <fmf>0.1</fmf>	4.5 <ai> 1.50</ai>
Mostly BC	1.0 <fmf>0.57</fmf>	1.55 <ai>0.4</ai>
Mixed BC & Dust	0.55 <fmf>0.1</fmf>	1.55 <ai>0.5</ai>

Relationship between FMF and AAE

Aerosol types	FMF vs. AAE	
Mostly Dust	0.3 <fmf>0.1</fmf>	3.0 <aae>2.0</aae>
Mostly BC	1.0 <fmf>0.5</fmf>	2.0 <aae>1.0</aae>
Mixed BC & Dust	0.4 <fmf>0.1</fmf>	2.0 <aae>1.0</aae>

Relationship between FMF and SSA

Mostly Dust ⇔summer and premonsoon Mostly BC ⇔winter and postmonsoon

Aerosol types	FMF vs. SSA	
Mostly Dust	0.4 <fmf>0.1</fmf>	0.95 <ssa>0.90</ssa>
Mostly BC	1.0 <fmf>0.5</fmf>	0.91 <ssa>0.84</ssa>
Mixed BC & Dust	0.4 <fmf>0.2</fmf>	0.90 <ssa>0.84</ssa>

