#### www.bsc.es



Barcelona Supercomputing Center Centro Nacional de Supercomputación

## **Dust Forecast Services**

WMO SDS-WAS and Barcelona Dust Forecast Center

Francesco Benincasa

Teheran, 8th of November 2016



Barcelona Supercomputing Center Centro Nacional de Supercomputación

## OUTLINE

**(** Barcelona Dust Forecast Center

( Data visualization

**(** Data manipulation







### System

#### **(** Bash: scheduled download of

- Forecast data (12 models for SDS, 1 for BDFC)
- Forecast images (UK MetOffice, ...)
- Observation data (txt, csv, xml, ...)
- Observation images (UK MetOffice, EUMETSAT, ...)

( Python:

- Normalize data to local standard (NetCDF regular lat lon)
- Export to other formats (GRIB1/2, ...)
- Communications between frontend and backend

**[** Fortran:

- Regrid to a common resolution
- Calculate evaluation scores (BIAS, RMSE, ...)





Barcelona Supercomputing Center Centro Nacional de Supercomputación

## WMO SDS-WAS NA-ME-E Regional Center

|                                                                 |                                                                                                      |                         |                                                                                                  |                                                                                                       | Log in Register                                                                                              |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                                                 | IERN AFRICA-MIDDLE EAST-EU<br>WMO Sand and Dust Storm V                                              | IROPE (N<br>Varning Adv | IA-ME-E<br>isory and As                                                                          | ) REGION                                                                                              | Stem (SDS-WAS                                                                                                |
| World<br>Meteorological<br>Organization<br>Watter Cratter Water | Earcelonas<br>Supercomputing<br>Control Manual de Descorrestado                                      |                         |                                                                                                  | /MO SDS WAS                                                                                           | Asia Regional Cente                                                                                          |
| HOME ABOUT US FOI                                               | RECAST & PRODUCTS PROJECTS & RESEARCH                                                                | MATERIALS               | NEWS                                                                                             | EVENTS                                                                                                | CONTACT US                                                                                                   |
| Home                                                            | You are here: Home                                                                                   |                         |                                                                                                  |                                                                                                       |                                                                                                              |
| 4 h 4 h                                                         | Northern Africa-Middle Fas                                                                           | t-Furone                |                                                                                                  | -F) Reai                                                                                              | onal Cente                                                                                                   |
| ADOUT US                                                        | by Francesco Benincasa — last modified May 29, 2012                                                  | 03:33 PM                |                                                                                                  |                                                                                                       | ondi cente                                                                                                   |
| Forecast & Products                                             | Outstanding                                                                                          |                         | ubcoribo to ti                                                                                   | ha Dublia Naw                                                                                         | clattan                                                                                                      |
| Projects & Research                                             | outstanding                                                                                          | 5                       | ubscribe to ti                                                                                   | ne Public New                                                                                         | sietter:                                                                                                     |
| N                                                               | Barcelona will host the first WMO Regional                                                           | . 7                     | o be informed                                                                                    | about our act                                                                                         | ivities, news and                                                                                            |
| Materials                                                       | Meteorological Center specialized on Atmosph                                                         | ieric e                 | vents related                                                                                    | to dust. Freque                                                                                       | ency is almost                                                                                               |
| News                                                            | Sand and Dust Porecast                                                                               |                         | nonthiy.                                                                                         |                                                                                                       |                                                                                                              |
| Events                                                          | Training events in Muscat, Oman                                                                      |                         |                                                                                                  | Full Name                                                                                             |                                                                                                              |
| Events                                                          | Files Download                                                                                       |                         |                                                                                                  | Your email                                                                                            |                                                                                                              |
| Public Newsletter                                               |                                                                                                      | _                       | 6                                                                                                |                                                                                                       |                                                                                                              |
| Users Newsletter                                                | Compared dust forecasts                                                                              |                         |                                                                                                  | Subscribe                                                                                             | e                                                                                                            |
|                                                                 |                                                                                                      |                         |                                                                                                  |                                                                                                       |                                                                                                              |
| Search                                                          | Dust forecasts                                                                                       |                         |                                                                                                  |                                                                                                       |                                                                                                              |
| Search Site Search                                              | WMO SDS WAS N Africa-Middle East-Europe RC<br>MEDIAN Dust Surface Concentration (µg/m <sup>3</sup> ) |                         | Ş 20                                                                                             | Rome_Tor_Vergata (Italy) - Novembe                                                                    | er 2013                                                                                                      |
| Latest News                                                     | Run: 12n 03 DEC 2013 Valid: 12n 03 DEC 2013 (M+00)                                                   | 20000                   | 0 0 AF AERONET > 0.6<br>• AF AERONET : 0.6<br>• A AFRONET : 0.6<br>• A ADO <sub>10</sub> AERONET | DOD <sub>10</sub> MACC 2CHIM     DOD <sub>10</sub> DREAMS NAME MACC     DOD <sub>10</sub> DREAMS NAME | DOD <sub>Lin</sub> U.K. HetOffice HetSIH     DOD <sub>Lin</sub> NASA GEDS-5     DOD <sub>Lin</sub> NCEP NGAC |
| Workshop on Meteorology,<br>Sand and Dust Storm,                | 50"N                                                                                                 | 2000                    |                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>8<br>8                                                                  | - DOG <sub>IN</sub> MEDIAN                                                                                   |

Sand and Dust Storm, Combating Desertification and Erosion: Presentations and Pictures

Nov 12, 2013

Workshop on Meteorology, Sand and Dust Storm (SDS), Combating Desertification and Erosion held in Istanbul, Turkey Nov 08, 2013



a np Establishing a WMO SDS-WAS Regional Node for West Asia: nal Current Capabilities and Needs





#### Dust observations

Spain (Generalitat de Cat.): Beliver de Centanya November 2013



## ( Retrieving

- Data models from 12 contributions of 11 institutions of 9 countries (Spain, UK, Serbia, US, Egypt, Italy, Greece, Norway, Netherlands) with 2 variables (SCONC\_DUST, OD550\_DUST)
- Data observations (AERONET, MODIS, MODIS DB, ...)
- External observationals products (MSG RGB EUMETSAT, MSG UK MetOffice, Debra-Dust)



## ( Producing

- Dust forecasts of 2 variables (Surface concentration and Aerosol optical depth) of numerical models + 4 multimodel products
- Models evaluation against observations
- Guidance for forecasters
- Time averaged values
- Studies of dust episodes
- Workshops, training courses and seminars (with materials)



#### ( <u>http://sds-was.aemet.es</u>



- Forecast

 Date:
 2015-10-29
 H+ anim •

 Doc on model inter-comparison
 Forecast evaluation
 Multimodel Products

 Please be sure to read the data policy.
 NOTE: Click on the images to enlarge.

 Dust optical depth:
 Dust optical depth:

You are here: Home > Forecast & Products > Dust forecasts > Compared dust forecasts



Compared dust forecasts

by Francesco Benincasa - last modified Mar 06, 2015 02:57 PM

















### ( <u>http://sds-was.aemet.es</u>

**Browsable** images

- Forecast
- Multimodel

You are here: Home > Forecast & Products > Dust forecasts > Multimodel Products

#### **Multimodel Products**

by Francesco Benincasa - last modified Oct 14, 2014 12:30

Compared dust forecasts Evaluation of the multi-model median

NOTE: Click on the images to enlarge.

#### Dust optical depth:



WMO SDS-WAS N.Africa-Middle East-Europe RC

STDEV Dust AOD

Run: 12h 05 NOV 2016 Valid: 12h 05 NOV 2016 (H+00)









Download full image

40"1 30"1

20\*

### ( <u>http://sds-was.aemet.es</u>

Browsable images

- Forecast
- Multimodel
- Evaluation
  - AERONET

You are here: Home > Forecast & Products > Forecast evaluation > Santa\_Cruz\_Tenerife - Spain



<< Back to Station Selection

NOTE: Click on the image to enlarge





#### ( <u>http://sds-was.aemet.es</u>

Browsable images

- Forecast
- Multimodel
- Evaluation
  - AERONET
  - MODIS

You are here: Home > Forecast & Products > Forecast evaluation > Evaluation of Saharan Dust Transport onto the Atlantic

#### **Monthly Evaluation**

by Francesco Benincasa — last modified Dec 03, 2014 01:25 PM

Date:

#### Go to Seasonal evaluation

Average values of the MODIS retrievals used in the evaluation. The plot has been generated from products between the 2nd of the stamped month and the 1st of the following one.



| BSC | Barcelona<br>Supercomputing<br>Center<br>Centro Nacional de Supercomputación |  |
|-----|------------------------------------------------------------------------------|--|
|-----|------------------------------------------------------------------------------|--|

|                 | BIAS  | ROOT MEAN SQUARE<br>ERROR | CORRELATION<br>COEFFICIENT | FRACTIONAL GROSS<br>ERROR | NUMBER OF<br>CASES |
|-----------------|-------|---------------------------|----------------------------|---------------------------|--------------------|
| BSC_<br>DREAM8b | -0.15 | 0.19                      | 0.80                       | 1.14                      | 1239               |

### ( <u>http://sds-was.aemet.es</u>

- Browsable images
  - Forecast
  - Multimodel
  - Evaluation
    - AERONET
    - MODIS
    - MODIS DB

You are here: Home > Forecast & Products > Forecast evaluation > Evaluation of dust models with MODIS Deep Blue retrievals

#### **Monthly Evaluation**

by Francesco Benincasa – last modified Jul 29, 2014 06:50

Date:

Average values of the MODIS retrievals used in the evaluation (data with an Angstrom exponent above 1.0 have not been considered). The plot has been generated from products between the 2nd of the stamped month and the 1st of the following one.



|   |               | BIAS  | ROOT MEAN SQUARE<br>ERROR | CORRELATION | FRACTIONAL GROSS<br>ERROR | NUMBER OF<br>CASES |
|---|---------------|-------|---------------------------|-------------|---------------------------|--------------------|
| B | SC_<br>REAM8b | -0.13 | 0.23                      | 0.45        | 0.67                      | 17766              |



#### ( <u>http://sds-was.aemet.es</u>)

**Browsable** images

- Observacions
  - In situ

You are here: Home > Forecast & Products > Dust observations > In-situ measurements > Granadilla - Spain

#### Granadilla - Spain

by Enric Terradellas — last modified Aug 01, 2014 10:43 AM

Select another station -- select -- 

Display previous graphs 2015-10

<< Back to Station Selection

Check Backtrajectories >>

NOTE: Click on the image to enlarge





#### ( <u>http://sds-was.aemet.es</u>)

Browsable images

- Observacions
  - In situ
  - MSG UK MO

You are here: Home > Forecast & Products > Dust observations > MSG - U.K. Met Office

#### MSG - U.K. Met Office

by Francesco Benincasa - last modified Feb 12, 2013 02:03

Date: 2016-11-05 ..... anim ▼

The U.K. Met Office MSG dust product shows an estimation of the dust optical thickness retrieved from empirical relationship between SEVIRI infrared (10.8  $\mu$ m) radiance and aerosol optical depth at 550nm. It is generated by transforming original retrievals to regularly-spaced grids (0.18 degree) using simple average method.

WARNING: Some level of cloud contamination may exist in the MSGAOD product due to the lack of temporal differencing scheme in the cloud processing. These artefacts are predominant over the Sahel and southern latitudes.





#### ( <u>http://sds-was.aemet.es</u>)

You are here: Home > Forecast & Products > Dust observations > MSG - EUMETSAT



- Observacions
  - In situ
  - MSG UK MO
  - MSG EUMETSAT





MET10 RGB-Dust 2015-10-30 09:00 UTC

MSG – EUMETSAT

Date: 2015-10-30

by Francesco Benincasa - last modified May 29, 2012 03:26 PM

anim •

#### ( <u>http://sds-was.aemet.es</u>

Browsable images

- Observacions
  - In situ
  - MSG UK MO
  - MSG EUMETSAT
  - Debra-Dust

You are here: Home > Forecast & Products > Dust observations > DEBRA-Dust

#### DEBRA-Dust

by Enric Terradellas - last modified Jul 11, 2016 04:30







Visibility

Date 2015-10-26

#### ( <u>http://sds-was.aemet.es</u>

- Browsable images
  - Observacions
    - In situ
    - MSG UK MO
    - MSG EUMETSA<sup>-</sup>
    - Debra-Dust
    - Visibility



by Francesco Benincasa - last modified Oct 28, 2015 09:32 AM

You are here: Home > Forecast & Products > Dust observations > Visibility





WMO SDS-WAS N\_Africa-Middle East-Europe RC Visibility reduced by airborne dust - 26 Oct 2015 18-24 UTC 60\*1 50\*N 40°N 30°N 20°N 10°N 20°W 10°W 40°E 20°E 30°E 50°E 60°E uncertain <1 km</li> 1 - 2 km 2 - 5 km .



[] <u>http://sds-was.aemet.es</u>

You are here: Home > Forecast & Products > Forecast evaluation > Model evaluation metrics

#### Monthly scores

by Francesco Benincasa - last modified Nov 27, 2014 11:51 AM

Date:

#### Numerical evaluation scores archive

#### Sep 2015. Dust Optical Depth. Threshold Angstrom Exponent = 0.600

BIAS

|                                | BSC_<br>DREAM8b | MACC-<br>ECMWF | DREAM8-<br>NMME-MACC | NMMB/BSC-<br>Dust | U.K. Met<br>Office | NASA<br>GEOS-5 | NCEP  | EMA<br>RegCM4 | DREAM<br>ABOL | MEDIAN |
|--------------------------------|-----------------|----------------|----------------------|-------------------|--------------------|----------------|-------|---------------|---------------|--------|
| Sahel/Sahara<br>show stations  | -0.28           | -0.16          | -0.12                | -0.32             | N/A                | -0.20          | -0.09 | -0.05         | 0.02          | -0.17  |
| Middle East<br>show stations   | -0.28           | -0.24          | -0.22                | -0.46             | N/A                | -0.27          | -0.36 | -0.23         | 0.02          | -0.27  |
| Mediterranean<br>show stations | -0.31           | -0.24          | -0.23                | -0.36             | N/A                | -0.25          | -0.22 | -0.20         | -0.16         | -0.26  |
| TOTAL                          | -0.30           | -0.20          | -0.18                | -0.35             | N/A                | -0.23          | -0.17 | -0.13         | -0.06         | -0.22  |

#### ROOT MEAN SQUARE ERROR

| BSC_<br>DREAM8b | MACC-<br>ECMWF                                                                                    | DREAM8-<br>NMME-MACC                                                                                                                                                                                                                                                                                                                                                                   | NMMB/BSC-<br>Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U.K. Met<br>Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NASA<br>GEOS-5                                                                                                                                                                                                                                                                                       | NCEP                                                                                                                                                                                                                                                                                                            | EMA<br>RegCM4                                                                                                                                                                                                                                                                                                                                                                                         | DREAM<br>ABOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MEDIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.48            | 0.42                                                                                              | 0.41                                                                                                                                                                                                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.43                                                                                                                                                                                                                                                                                                 | 0.40                                                                                                                                                                                                                                                                                                            | 0.49                                                                                                                                                                                                                                                                                                                                                                                                  | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.27            | 0.12                                                                                              | 0.17                                                                                                                                                                                                                                                                                                                                                                                   | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19                                                                                                                                                                                                                                                                                                 | 0.16                                                                                                                                                                                                                                                                                                            | 0.30                                                                                                                                                                                                                                                                                                                                                                                                  | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.60            | 0.48                                                                                              | 0.44                                                                                                                                                                                                                                                                                                                                                                                   | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.51                                                                                                                                                                                                                                                                                                 | 0.43                                                                                                                                                                                                                                                                                                            | 0.51                                                                                                                                                                                                                                                                                                                                                                                                  | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N/A             | N/A                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.67            | 0.60                                                                                              | 0.56                                                                                                                                                                                                                                                                                                                                                                                   | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                                                                                                                                                                                                                 | 0.56                                                                                                                                                                                                                                                                                                            | 0.59                                                                                                                                                                                                                                                                                                                                                                                                  | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.23            | 0.19                                                                                              | 0.14                                                                                                                                                                                                                                                                                                                                                                                   | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.21                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                            | 0.34                                                                                                                                                                                                                                                                                                                                                                                                  | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.10            | 0.12                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                                                                                   | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                            | 0.25                                                                                                                                                                                                                                                                                                                                                                                                  | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N/A             | N/A                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.35            | 0.20                                                                                              | 0.24                                                                                                                                                                                                                                                                                                                                                                                   | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                                                                                                                                                                                                                                                                 | 0.23                                                                                                                                                                                                                                                                                                            | 0.34                                                                                                                                                                                                                                                                                                                                                                                                  | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | ВSC_<br>DREAMSD<br>0.27<br>0.60<br>1.0.67<br>0.23<br>0.02<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23 | ВЗС_<br>DREAMBD         МАСС-<br>ECMWF           0.48         0.42           0.27         0.12           0.60         0.48           0.41         0.44           0.62         0.48           0.43         0.44           0.63         0.43           0.12         0.12           0.14         0.45           0.15         0.23           0.14         0.44           0.15         0.45 | BRC_<br>DREAMB         MACC-<br>ECMUF         DREAMB-<br>NMME-MACC           0.48         0.42         0.41           0.027         0.12         0.017           0.060         0.48         0.44           1.040         0.44         0.44           1.040         0.48         0.44           1.040         0.48         0.44           1.041         0.44         0.44           1.042         0.44         0.44           1.043         0.44         0.44           1.043         0.49         0.44           1.043         0.41         0.44           1.044         0.44         0.44           1.045         0.41         0.44           1.045         0.41         0.44 | BRC_<br>DREAMB         MACC-<br>ECMUF         DREAMB-<br>NMME-MACC         NMMB/BSC-<br>Dust           0.048         0.041         0.050           0.027         0.12         0.017         0.031           0.050         0.48         0.041         0.031           0.060         0.48         0.44         0.051           0.061         0.48         0.441         0.051           0.062         0.493         0.494         0.493           0.053         0.600         0.056         0.638           0.012         0.010         0.014         0.026           0.013         0.122         0.013         0.141           0.14         0.142         0.141         0.141           0.15         0.123         0.124         0.141           0.14         0.142         0.141         0.141           0.15         0.141         0.141         0.141 | BRC_<br>DREAMBREAMB-<br>NMME-MACCNMMB/BSCK.K.Met<br>OfficeQ.48S.42Q.43Q.50N/AQ.027Q.12Q.017Q.31N/AQ.027Q.12Q.017Q.31N/AQ.050Q.48Q.44Q.65N/AQ.40Q.48Q.44Q.65N/AQ.40Q.44Q.404Q.44A/AQ.41Q.44Q.45Q.44A/AQ.42Q.41Q.44Q.44A/AQ.43Q.49Q.41Q.44A/AQ.43Q.41Q.44Q.44A/AQ.43Q.42Q.41Q.44A/AQ.43Q.42Q.42Q.44A/A | BSC_<br>DREAMBNAMCNRAME-MACCNMMB/BSCU.K. MET<br>OfficeNASA<br>GEOS-5Q.48Q.42Q.401Q.500N/AQ.43Q.027Q.12Q.017Q.031N/AQ.19Q.050Q.48Q.017Q.031N/AQ.19Q.050Q.48Q.444Q.055N/AQ.19Q.051Q.48Q.444Q.055N/AQ.14Q.051Q.48Q.444Q.655N/AQ.14Q.053Q.19Q.104Q.164N/AQ.10Q.101Q.121Q.101Q.144N/AQ.14Q.135Q.202Q.244Q.377N/AQ.25 | BSC_<br>DREAMBNACC-<br>ECMWFDREAMB-<br>NMME-MACCNMMB/BSCUK. Met<br>OfficeNASA<br>ECMUSNCEP<br>NGACQ.48Q.42Q.401Q.500N/AQ.431Q.4010.0270.120.0170.031N/A0.0190.1610.0500.480.0440.055N/A0.0510.4310.0400.480.0440.055N/A0.0510.4310.0510.0480.0400.0400.0400.0410.0410.0520.0590.0560.068N/A0.0100.1610.0230.0190.0140.0260.1410.1410.1010.0100.121Q.1013Q.141N/AN/AN/A0.0350.2000.201Q.131N/AN/AQ.251 | BSC_<br>DREAMSNAGC-<br>NMME-MACCREAMS-<br>NMME-MACCNMMB/BSC<br>DustNASA<br>OfficeNCEP<br>NGACRMA<br>RegotableQ.48Q.42Q.441Q.500N/AQ.431Q.401Q.401Q.027Q.12Q.017Q.031N/AQ.19Q.161Q.301Q.030Q.48Q.017Q.031N/AQ.19Q.161Q.301Q.040Q.44Q.014Q.015Q.44Q.44Q.44Q.44Q.040Q.44Q.444Q.455N/AQ.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44Q.44Q.45Q.44Q.44Q.44Q.44Q.44 <td>BSC_<br/>DREAMSNAME-MACCNMMB/DSC<br/>DustNASA<br/>OfficeNCEP<br/>RECOVERAA<br/>RegOMAREAM<br/>REGOMA<b>0.480.42D.41D.50N/AD.43D.40D.42D.43</b>0.0270.120.0170.031N/A0.0190.160.0300.170.0500.480.0170.031N/A0.0190.160.0300.170.0600.480.0140.055N/A0.040.040.040.040.0740.0480.0140.056N/A0.040.040.040.040.0610.040.0560.040.0560.040.050.040.040.0510.040.0560.040.040.040.040.040.040.0530.0590.0560.0560.040.0560.0560.0560.0560.0540.0590.0510.0510.0510.0510.0510.0510.0560.0530.0190.0140.026N/AN/AN/A0.0160.0260.0170.0540.0200.0240.037N/AN/AN/AN/A0.0250.0310.0310.0550.230.240.2440.377N/AN/A0.0250.230.340.3710.0550.240.2440.377N/AN/A0.250.230.340.3710.0550.240.2440.377N/AN/A<td< td=""></td<></td> | BSC_<br>DREAMSNAME-MACCNMMB/DSC<br>DustNASA<br>OfficeNCEP<br>RECOVERAA<br>RegOMAREAM<br>REGOMA <b>0.480.42D.41D.50N/AD.43D.40D.42D.43</b> 0.0270.120.0170.031N/A0.0190.160.0300.170.0500.480.0170.031N/A0.0190.160.0300.170.0600.480.0140.055N/A0.040.040.040.040.0740.0480.0140.056N/A0.040.040.040.040.0610.040.0560.040.0560.040.050.040.040.0510.040.0560.040.040.040.040.040.040.0530.0590.0560.0560.040.0560.0560.0560.0560.0540.0590.0510.0510.0510.0510.0510.0510.0560.0530.0190.0140.026N/AN/AN/A0.0160.0260.0170.0540.0200.0240.037N/AN/AN/AN/A0.0250.0310.0310.0550.230.240.2440.377N/AN/A0.0250.230.340.3710.0550.240.2440.377N/AN/A0.250.230.340.3710.0550.240.2440.377N/AN/A <td< td=""></td<> |



#### ( <u>http://sds-was.aemet.es</u>)



#### Numerical data archive



#### **Files Download**

by Francesco Benincasa — last modified Jan 16, 2015 01:31 PM — History

This page allows downloading numerical dust forecasts issued by different dust prediction models. Dust models may have very different characteristics (global or regional, horizontal and vertical resolutions, dust emission and deposition parameterizations, presence or absence of data assimilation, feedback to the meteorological model, ...). Information on the characteristics and configurations of the models can be found on their respective websites.

#### Please be sure to read the data policy.

Models currently available are:

| BSC-DREAM8b v2.0  | DOWNLOAD FILES | Model website | Barcelona<br>Supercomputing<br>Center<br>Center Nacional de Supercomputación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MACC-ECMWF        | DOWNLOAD FILES | Model website | Constant of the second |
| DREAM-NMME-MACC   | DOWNLOAD FILES | Model website | SEEVCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NMMB/BSC-Dust     | DOWNLOAD FILES | Model website | Barcelona<br>Supercomputing<br>Center<br>Center Nacional de Supercomputación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NASA-GEOS-5       | DOWNLOAD FILES | Model website | NASA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NCEP-NGAC         | DOWNLOAD FILES | Model website | NCEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DREAMABOL         | DOWNLOAD FILES | Model website | ISAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EMA-RegCM4        | DOWNLOAD FILES | Model website | EGYPTIAN<br>METEOROLOGICAL AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Multimodel MEDIAN | DOWNLOAD FILES | Model website |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### http://sds-was.aemet.es

Numerical evaluation scores archive

Numerical data archive

Data download

| Title                   | Size           | Modified     |            |                       |          |                 |
|-------------------------|----------------|--------------|------------|-----------------------|----------|-----------------|
| latest - (download all) | 4.0 kB         | Nov 18, 20:  | 14 10:40 P | м                     |          |                 |
| 2014 - (download all)   | 4.0 kB         | Nov 01, 203  | 14 10:40 P | м                     |          |                 |
| 2013 - (download all)   | Title          |              | Size       | Modified              |          |                 |
| 2012 - (download all)   | 11 - (d        | ownload all) | 4.0 kB     | Nov 18, 2014 10:40 PM |          |                 |
|                         | 10 - <i>(d</i> | ownload all) |            |                       |          |                 |
| ρ                       | 09 - (d        | ownload all) | Title      |                       | Size     | Modified        |
| C                       | 08 - (d        |              | 20141      | 118_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 18, 2014 0  |
|                         | 07 - (d        |              | 20141      | 117_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 17, 2014 0  |
|                         | 07 (0          |              | 20141      | 116_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 16, 2014 0  |
|                         | <b>UD</b> - (a | ownioad all) | 20141      | 115_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 15, 2014 0  |
|                         | <b>05</b> - (d | ownload all) | 20141      | 114 BSC DREAM8h V2 pc | 47 7 MB  | Nov 14 2014 0   |
|                         | 04 - (d        | ownload all) | 20111      | 111_000_0NEXM00_V2.md | 17.7 100 | 1000 11, 2011 0 |
|                         | <b>03</b> - (d | ownload all) | 20141      | 113_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 13, 2014 0  |
|                         | 02 - (d        | ownload all) | 20141      | 112_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 12, 2014 0  |
|                         | 01 (d          |              | 20141      | 111_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 11, 2014 0  |
|                         | 01 - (0        | ownioau aii) | 20141      | 110_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 10, 2014 0  |
|                         |                |              | 20141      | 109_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 09, 2014 0  |
|                         |                |              | 20141      | 108_BSC_DREAM8b_V2.nc | 47.7 MB  | Nov 08, 2014 0  |



#### I Data files download

First step: <u>REGISTER</u> to the portal (go to home page and click on the top-right link – temporally suspended, send and email to <u>sdswas@aemet.es</u>)

Go to <u>data download</u> page and download manually: follow model link and choose year, month and/or day ...



#### I Data files download

#### ... or download automatically with a program (i.e. <u>WGET</u>):

#### a single file:

wget --http-user="YOUR\_REGISTRATION\_EMAIL" --http-password="YOUR\_REGISTRATION\_PASSWORD" --auth-no-challenge http://MODEL\_REPOSITORY\_URL/YYYY/MM/YYYYMMDDMODEL\_NAME.nc

#### an entire month/year:

wget --http-user="YOUR\_REGISTRATION\_EMAIL" --http-password="YOUR\_REGISTRATION\_PASSWORD" --auth-no-challenge http://MODEL\_REPOSITORY\_URL/YYYY/MM/@@download -O FILENAME.zip

#### the latest file:

wget --http-user="YOUR\_REGISTRATION\_EMAIL" --http-password="YOUR\_REGISTRATION\_PASSWORD" --auth-no-challenge http://MODEL\_REPOSITORY\_URL/latest/@@download -O FILENAME.zip



### ( Materials

| World<br>Heteorological<br>Organization<br>Water Cana - New |                    |                                                                             | -MIDDLE EAST-EU<br>O Sand and Dust Storm                                                         | UROPE (N<br>Warning Advis | A-ME-E<br>sory and As | REGION<br>sessment Sy<br>MO SDS WAS [] | Log in<br>IAL CENTER<br>stem (SDS-WAS)<br>Asia Regional Center |
|-------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|-----------------------|----------------------------------------|----------------------------------------------------------------|
| HOME A                                                      | BOUT US            | FORECAST & PRODUCTS                                                         | PROJECTS & RESEARCH                                                                              | MATERIALS                 | NEWS                  | EVENTS                                 | CONTACT US                                                     |
| Materials                                                   |                    | You are here: Ho                                                            | me > Materials                                                                                   |                           |                       |                                        |                                                                |
| <ul> <li>Training</li> <li>Workshops</li> </ul>             |                    | Materials<br>by Enric Terradellas                                           | — last modified Oct 29, 2015 11:5                                                                | 54 AM                     |                       |                                        |                                                                |
| > Dust Events                                               |                    | This section inclu                                                          | des different materials relate                                                                   | d to mineral dust         |                       |                                        |                                                                |
| <ul> <li>Scientific Doc</li> <li>Technical Rep</li> </ul>   | umentatio<br>oorts | training mate     workshops     information o                               | rials<br>n several dust events                                                                   |                           |                       | Г                                      | $\mathbf{m}$                                                   |
| > Meningitis                                                |                    | scientific doct     technical repo                                          | orts                                                                                             |                           |                       |                                        |                                                                |
| > ACMAD bullet                                              | ins                | <ul> <li>information o</li> <li>information r</li> <li>WMO SDS-W</li> </ul> | n dust impacts (meningitis).<br>elative to different events car<br>AS (meetings, training course | rried out in the fr       | amework of t          | ne                                     |                                                                |
| Search<br>Search Site                                       | Search             | Print this                                                                  |                                                                                                  |                           |                       |                                        |                                                                |



Barcelona Supercomputing Center Centro Nacional de Supercomputación

## Barcelona Dust Forecast Center





( Operational center

Operated by BSC and AEMET

Officially recognized by the WMO

72 hours forecast (3-hourly) model developed at BSC

6 variables (Optical depth, Dry and Wet deposition, Load, Surface concentration, Surface extinction)



( <u>http://dust.aemet.es</u>

( Products

Forecast images
 Google Earth integration (KML/KMZ files)
 Averaged values images
 Zoomed area forecast images (Spain, Burkina Faso, ...)



You are here: Home / Forecast

#### **Dust Optical Depth**





What are KML/KMZ files?



You are here: Home / Other products / Averaged values

#### Monthly averaged values

Monthly averaged values of dust surface concentration and dust load computed from the daily runs of the NMMB/BSC-Dust model.

Date 2015-10

Methods: Time-averaged values

NOTE: Click on the images to enlarge

#### Monthly Averaged Dust Surface Concentration (µm/m<sup>3</sup>)









## **(** Services

Forecast images dissemination
 WMO GTS (Global Telecommunication System)
 EUMETCast (EUMETSAT's primary dissemination mechanism)







## ( WMO GTS

- Global network for transmission of meteorological data
- Data proceeding from weather stations, satellites and NWP centres
- Implemented and operated by
  - National meteorological services
  - Other international organizations (ECMWF, EUMETSAT, ...)



## ( WMO GTS





## **(**EUMETCast

- Multi-service dissemination system based on standard Digital Video Broadcast (DVB) technology
- It uses commercial telecommunication geostationary satellites
- Multi-cast files (data and products) to a wide user community
- From 15th of October 2015 BDFC products are distributed over Europe and Africa



## **(EUMETCast**







Barcelona Supercomputing Center Centro Nacional de Supercomputación

## Data visualization

( Grid Analysis and Display System (GrADS)

- ( <u>Ncview</u>
- ( <u>McIDAS</u>
- **(ECMWF**<u>MetView</u>
- ( Panoply data viewer

( MapGenerator (Python-based, home-made)



### Data visualization – MapGenerator

( Problem

- Need to show results with high quality plots for an operational system
- Handling a huge quantity of data with tons of scripts can be very frustrating
- Hard to
  - Debug
  - Maintain
  - Add features, bug fixing, etc ...
- **(Solution** 
  - Develop an easy to use general-purpose software system able to generate plots

**(**Software Stack: python/numpy/scipy/OpenGrADS



#### Data visualization – MapGenerator

(Various formats support (NetCDF, GRIB, HDF, ...)

### Configuration through configuration file(s), no need to touch the code!

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [DREAM_asia_aod]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>[General]<br/>aspect = False<br/>drawopts = 'coastlines', 'countries',<br/>area_thresh = 100<br/>resolution = 'l'<br/>anim = True<br/>indir = '/home/dream/ETA_DREAM_v2/ASIA/OPER8N/eta.1.a/grads'<br/>outdir = '/home/sdswas/dream-images/data/images'<br/>lat = 5., 60., 10.<br/>lon = 58., 130., 10.<br/>total = 13<br/>freq = 6<br/>interval = 1<br/>gap = 1,<br/>srcfile = 'CSFC.ctl',<br/>xsize = 1<br/>ysize = 0.9<br/>dpi = 56<br/>joint_template = '%(date)s-JOINT-%(step)s'</pre> | <pre>title = """BSC-DREAM8b Dust Opt. Depth 550nm and 3000m Wind<br/>%(step)sh forecast for %(simhh)sUTC %(day)s %(MONTH)s %(year)s<br/>%http://www.bsc.es/projects/earthscience/BSC-DREAM/\$<br/>"""<br/>bounds = 0.02, 0.15, 0.4, 0.8, 1.6, 3.2, 6.4<br/>boundaries = 0, 10<br/>lat = 5., 60., 10.<br/>lon = 45., 130., 10.<br/>total = 13<br/>freq = 6<br/>interval = 1<br/>gap = 1,<br/>colors = '#A1EDE3', '#5DE3BB', '#53BD9D', '#FCCA26', '#E5724C', '#944038',<br/>over = '#AB025C'<br/>under = '#AB025C'<br/>under = '#ffffff'<br/>var = 'dod',<br/>srcfile = 'CSFC.ctl',<br/>wind = 'DUST.ctl'<br/>windopts = 'u.2', 'v.2', '6'<br/>xsize = 1<br/>ysize = 0.9<br/>dpi = 300</pre> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>img template = '%(date)s image %(step)s'</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



**(**WMO Dust Centers

**(**CALIOPE Air quality forecast system: <u>www.bsc.es/caliope</u>

**(NMMB/BSC-Dust Forecast on BSC website** 

I BSC-DREAM8b v2.0 Atmospheric Dust Forecast System on BSC website

Used by some researchers in the department to plot maps for articles, posters or presentations



## ( Installation

- Java: <u>www.java.com</u>
- Panoply: <a href="https://www.giss.nasa.gov/tools/panoply/">www.giss.nasa.gov/tools/panoply/</a>
- In case of memory problems, launch manually:

C:\> "C:\Program Files\Java\jre\bin\java" -Xmx1g -jar "C:\Program Files\PanoplyWin\jars\Panoply.jar"



### Data visualization – Panoply





### Data visualization – Panoply

#### OD550\_DUST in 20131202\_BSC\_DREAM8b\_V2

File Edit View History Bookmarks Plot Window Help

| Plot / Array |
|--------------|
|--------------|

Dataset: 20131202\_BSC\_DREAM8b\_V2.nc Variable: OD550\_DUST, OD550\_DUST Units: -

|          |           |            |               |            |                | X-Axis: I     | ongitude (°E)  |            |         |         |        |
|----------|-----------|------------|---------------|------------|----------------|---------------|----------------|------------|---------|---------|--------|
|          |           | 67         | -12,333       | -12,000    | -11,667        | -11,333       | -11,000        | -10,667    | -10,333 | -10,000 | -9,667 |
|          | 63,000    | NaN        | NaN           | NaN        | NaN            | NaN           | NaN            | NaN        | NaN     | NaN     | N      |
|          | 62,667    | NaN        | NaN           | NaN        | 0,0E+00        | 0,0E+00       | 0,0E+00        | 1,7E-06    | 0,0E+00 | 0,0E+00 | 1,6E   |
|          | 62,333    | E+00       | 0,0E+00       | 6,9E-06    | 1,1E-05        | 6,5E-06       | 2,0E-05        | 4,3E-05    | 5,1E-05 | 6,0E-05 | 9,2E   |
|          | 62,000    | 4E-05      | 2,7E-05       | 3,8E-05    | 5,6E-05        | 5,9E-05       | 6,6E-05        | 8,7E-05    | 1,1E-04 | 1,3E-04 | 1,4E   |
| <u> </u> | 61,667    | 5E-05      | 5,6E-05       | 5,7E-05    | 6,3E-05        | 6,7E-05       | 7,1E-05        | 7,9E-05    | 9,9E-05 | 1,2E-04 | 1,4E   |
| 0        | 61,333    | 2E-05      | 5,4E-05       | 5,6E-05    | 5,8E-05        | 6,0E-05       | 6,8E-05        | 8,4E-05    | 1,0E-04 | 1,2E-04 | 1,4E   |
| - Pe     | 61,000    | DE-05      | 5,2E-05       | 5,5E-05    | 5,8E-05        | 6,3E-05       | 7,8E-05        | 9,3E-05    | 1,1E-04 | 1,3E-04 | 1,5E   |
| gti      | 60,667    | 9E-05      | 5,2E-05       | 5,5E-05    | 6,0E-05        | 7,5E-05       | 9,0E-05        | 1,1E-04    | 1,3E-04 | 1,5E-04 | 1,6E   |
| is l     | 60,333    | DE-05      | 5,3E-05       | 5,7E-05    | 7,3E-05        | 8,9E-05       | 1,1E-04        | 1,3E-04    | 1,4E-04 | 1,6E-04 | 1,7E   |
| -Axi     | 60,000    | 2E-05      | 5,6E-05       | 7,1E-05    | 8,8E-05        | 1,0E-04       | 1,3E-04        | 1,5E-04    | 1,7E-04 | 1,7E-04 | 1,8E   |
| × 🗌      | 59,667    | 5E-05      | 7,0E-05       | 8,7E-05    | 1,0E-04        | 1,3E-04       | 1,5E-04        | 1,7E-04    | 1,8E-04 | 1,9E-04 | 1,9E   |
|          | 59,333    | 9E-05      | 8,6E-05       | 1,0E-04    | 1,2E-04        | 1,5E-04       | 1,7E-04        | 1,8E-04    | 1,9E-04 | 2,0E-04 | 1,9E   |
|          | 59,000    | 5E-05      | 1,0E-04       | 1,2E-04    | 1,5E-04        | 1,7E-04       | 1,8E-04        | 1,9E-04    | 2,0E-04 | 1,9E-04 | 1,8E   |
|          | 58,667    | DE-04      | 1,2E-04       | 1,4E-04    | N 1,6E-04      | 1,8E-04       | 1,9E-04        | 2,0E-04    | 1,9E-04 | 1,8E-04 | 1,7E   |
| F        | 58.333    | 2E-04<br>∢ | 1.3E-04       | 1.6E-04    | 1.7E-04        | 1.8E-04       | 1.9E-04        | 1.9E-04    | 1.8E-04 | 1.7E-04 | 1.5E   |
|          |           |            |               |            |                | Format        | : %.1E 👻       |            |         |         |        |
| Ari      | ray(s) Sc | ale C      | ontours & Veo | ctors Map  | Labels         |               |                |            |         |         |        |
|          |           |            |               |            | Plot Map       | ✓ of          | Array 1 Only 👻 | Interpolat | e       |         |        |
|          |           |            |               | Array 1: C | D550_DUST      |               |                |            |         |         |        |
|          |           |            |               | Time: 1    | of 25 = 2013-1 | 2-02 12:00:00 | •              |            |         |         |        |
|          |           |            |               |            |                |               |                |            |         |         |        |

#### Barcelona Supercomputing Center Centro Nacional de Supercomputación

Slice: Time [1 of 25] = 2013-12-02 12:00:00





Barcelona Supercomputing Center Centro Nacional de Supercomputación

## Data manipulation

## ( Formats: NetCDF



- Developed and maintained at <u>Unidata</u> (UCAR)
- Well documented with complete <u>technical information</u>
- With a large list of <u>supporting software</u>



#### Data manipulation

### **(** A NetCDF dataset contains

#### Dimensions

lon = 289 ; // longitude, number of points in the X axis
lat = 211 ; // latitude, number of points in the Y axis
time = 25 ; // number of timesteps

#### Variables

float sconc\_dust(time, lat, lon) ;
 sconc\_dust:long\_name = "dust 10m concentration" ;
 sconc\_dust:units = "kg m-3" ;
 sconc\_dust:title = "dust 10m concentration" ;
 sconc\_dust:\_FillValue = -9.e+33f ;

### And, of course, **numerical values**!



#### Data manipulation

( Metadata!

Data must be understandable: migrograms and kilograms are not the same!

Follow standards

Numerical metadata

Time units

int time(time) ;
 time:units = "hours since 2015-02-23 12:00:00.0" ;
 time:description = "time forecast" ;

Missing value

SCONC\_DUST:missing\_value = -999.f SCONC\_DUST:\_FillValue = -999.f



## NetCDF3 "classic" diagram



A file has named variables, dimensions, and attributes. Variables also have attributes. Variables may share dimensions, indicating a common grid. One dimension may be of unlimited length.



From Unidata's NetCDF Data Model: http://www.unidata.ucar.edu/software/netcdf/docs/netcdf\_data\_model.html

## NetCDF4 enhanced data model



A file has a top-level unnamed group. Each group may contain one or more named subgroups, user-defined types, variables, dimensions, and attributes. Variables also have attributes. Variables may share dimensions, indicating a common grid. One or more dimensions may be of unlimited length.



From Unidata's NetCDF Data Model: http://www.unidata.ucar.edu/software/netcdf/docs/netcdf\_data\_model.html

( NetCDF Operator (NCO)

(Climate Data Operators (CDO)

( Programming languages like <u>R</u> or <u>Python</u>



# ( Download the <u>installer</u> and execute it( Put the NCO directory in the PATH:

- 1. Right-click on "My computer" -> Properties -> Advanced -> Environment Variables
- 2. In "System variables" chose "Path" variable and click the "Edit" button.
- 3. Append the NCO path after a semicolon, e.g.: ORIGINAL\_PATH;C:\nco

[ Read the <u>documentation</u>!



### Data manipulation – NCO/NCKS

## ( Append content

ncks -A FILEIN.nc FILEOUT.nc

( Isolate variable

ncks -v VAR FILEFROM.nc FILETO.nc

( Select an area

ncks -d longitude,260, 20150223\_BSC\_DREAM8b\_V2.nc 20150223\_BSC\_DREAM8b\_V2\_cutted.nc



### **(N**cap2, the arithmetic processor

ncap2 -O -s 'SCONC\_DUST=0.00347949\*(exp(Insp)/t)\*(aermr04+aermr05+aermr06)' IN.nc OUT.nc

### **(C** Ncatted, the attribute editor

ncatted -a long\_name,T,o,c,temperature IN.nc

### ( Ncrename

ncrename -h -O -v duaod550,OD550\_DUST IN.nc OUT.nc



( Download and unzip the <u>compressed file</u>

If Put the CDO directory where you like in you filesystem and add the PATH to system one (like NCO)

**(** Read the <u>documentation</u>!



### Data manipulation – CDO/Examples

## ( File info

cdo sinfov FILENAME.nc

### **(**Select area

cdo sellonlatbox,25,60,10,30 FILEIN.nc FILEOUT.nc

## ( Time mean

cdo timmean FILEIN.nc FILEOUT.nc



#### www.bsc.es



**Barcelona Supercomputing Center** Centro Nacional de Supercomputación

## Thank you!

For further information please contact francesco.benincasa@bsc.es sdswas@aemet.es dust@aemet.es