www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Dust prediction models

Sara Basart (sara.basart@bsc.es)

Casablanca, 20th November 2014

Questions will be welcome!

What do we need to forecast dust storms?

- 1. Satellites, surface observations, NWP models and dust models.
- 2. Good knowledge of the dust climatology in the region.
- 3. Good knowledge of observation limitations.
- 4. Good knowledge of the dust model limitations.

Dust models are a mathematical representation of atmospheric dust cycle.

Extracted from Shao (2008)

- ✓ To complement dust-related observations, filling the temporal and spatial gaps of the measurements.
- ✓ To help us to understand the dust processes and their interaction with climate and ecosystems.
- ✓ To predict the impact of dust on surface level concentrations used as SHORT-TERM FORECASTING TOOLS (3-5 days ahead)

- **1.** Dust cycle and associated processes
 - The atmospheric dust cycle
 - Dust global climatology
 - Types of dust storms and model forecasting skills

2. Dust forecasting models

- Dust emission schemes and dust sources
- Dust transport
- Dust deposition and sedimentation
- Dust operatcional models at BSC
- Model evaluation and model intercomparison: The WMO SDS-WAS NAMEE RC

MODIS true colour composite image for March 2005 depicting a dust storm initiated at the Bodélé Depression (Chad Basin)

MODIS True color Western Africa – Altantic Ocean

People caught in a dust storm in Mali

Dust global distribution

The global distribution of **TOMS** dust sources.

Extracted from Prospero et al. (2002, Rev. Geophys.)

Temporal changes in the dust distribution: SEASONAL and DECADAL CHANGES

• Seasonal dust distribution changes well characterized. Follows seasonal changing weather regimes (mainly) and vegetation changes (in semi-arid areas)

• Interannual/decadal changes are controlled by climate and surface modification (land use, desertification). Decadal changes are not well captures by models

The atmospheric dust cycle and involves a variety of processes:

- Dust emission from dry unvegetable surfaces (dust sources)
- Mid- and long-range transport
- Sedimentation, wet and dry deposition

Extracted from Shao (2008)

Dust Impacts

Image from WMO website (http://www.wmo.int/pages/prog/arep/wwrp/new/hurricanes.html)

Meteorology and climate

- Marine productivity
- Coral mortality
- Hurricanes formation

Air Quality and Human Health

- Respiratory disease (asthma)
- Eye infections
- Meningitis in Africa
- Valley Fever in the Americas

Aviation and Ground Transportation

• Low visibility (i.e. air disasters)

Agriculture

Energy and industry

Niger

Dust transport is a global phenomenon. However, dust emission is a threshold phenomenon, sporadic and spatially heterogeneous, that is locally controlled on small spatial and temporal scales

-source point

Chad

Lake Chad-

Nigeria

hospot

Dust emission is complex physical process involving entrainment of soil particles by the surface winds.

-Cameroon

Types of dust storms:

Synoptic dust storms (large scale weather systems)

- Prefrontal winds
- Postprontal winds
- Large-scale Trade winds
- ...

Mesoscale dust storms

- Downslope winds
- Gap flow
- Convection and Haboobs
- Inversion downburst storms
- ...

Synoptic dust storms: Pre-frontal

Synoptic dust storms: Post-frontal

RGB IDENTIFICACION POLVO 7 MAR 07 A LAS 15:3

Synoptic dust storms: Large-scale trade winds

Synoptic dust storms: Large-scale trade winds

Synoptic dust storms: Large-scale trade winds

Mesoscale dust storms: Downslope winds

Mesoscale dust storms: Gap flow

Mesoscale dust storms: Dust devils (convection)

Mesoscale dust storms: Haboobs

Mesoscale dust storms: Inversion downbursts

Mesoscale dust storms: Inversion downbursts

Mesoscale dust storms: Inversion downbursts

Mesoscale dust storms: Inversion downbursts

Synoptic dust storms (large scale weather systems) Well captured by models.

Pre-frontal winds

Post-frontal winds

Large-scale trade winds

Haboobs

Mesoscale dust storms **Poorly captured by models.**

Gap flow

Some types improve in regional models.

Convection

Dust cycle and associated processes: Types of dust storms

Atmos. Chem. Phys., 14, 11753–11773, 2014 www.atmos-chem-phys.net/14/11753/2014/ doi:10.5194/acp-14-11753-2014 © Author(s) 2014. CC Attribution 3.0 License.

Aerosol characterization at the Saharan AERONET site

Tamanrasset

Dust cycle and associated processes: Types of dust storms

Extracted from Guirado et al. (2014, ACP)

Dust forecasting models

Centro Nacional de Supercomputación

• Dust processes span over five orders of magnitude in space and time. **Dust transport** is a global phenomenon. However, **dust emission** is a threshold phenomenon, sporadic and spatially heterogeneous, that is locally controlled on small spatial and temporal scales.

• To correctly describe and quantify the dust cycle, one needs to understand equally well local-scale processes such as saltation and entrainment of individual dust particles as well as large-scale phenomena such as mid- and long-range transport.

Accurate representation of dust sources and sinks is critical for providing realistic Barcelona Supercomputing Center

Image from L.Vendrell

Dust forecasting models

Centro Nacional de Supercomputación

Regional models offer a number of advantages in representation of dust compared to **Global models**.

- Finer spatio-temporal resolution.
- Multiple physics parameterizations allow for more realistic representation of the topography, soil conditions and mesoscale circulations.

Regional models are better suited for simulation of timing, duration and intensity of individual dust events.

Dust models simulate the atmospheric dust cycle and involves a variety of processes:

Dust source function

E

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Main landscapes of the North Africa

A) Central part of Saharan Atlas. In the background, mountains, and in front, an overgrazed plain;

 B) Northern part of Saharan Atlas. Esparto grass steppe degraded by a strong anthropic action. The sandy soil disappears, denuding the sandstone substratum;

C) The Great Hamada south-west of El-Abiodh-Sidi-Cheikh;

D) Daïa in the Mechfar, at Hassi Cheikh well;

E) North-east of the Great Western Erg: coarse sand interdune corridor with deflation cauldron and palaeolake deposits;

F) North-east of the Great Western Erg: great coarse sand dome dunes, covered by fine sand active dunes.

Parent soil size distribution

Four top soil texture classes according STASGO-FAO 1km database are converted to 4 parent soil size categories following Tegen et al. [2002]

Dust source function

DUST HOT SPOTS ASSOCIATED WITH TOPOGRAPHIC DEPRESSIONS (Prospero et al., 2002) Images show topography (color scale) and TOMS AI (contours)

Dust source function: GOCART and NMMb/BSC-Dust models

Dust source function: Other approaches

NAAPS model

Land use mask + Erodibility map derived from TOMS Satellite AI climatology

ECMWF-GEMS model

Background albedo in the ultraviolet-visible part of the shortwave spectrum. Only albedos with values between 0.09 and 0.54, assumed to be representative of light-colored soil and sparse vegetation are plotted.

- Creep or rolling motion of the largest particles (> 500 um)

- Saltation or horizontal motion of large soil grains (sand) (50-500um)

Suspension of dust
(after sandblasting
or saltation bombardment)
(0.1-50 um)

Movie from the COMET program at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR)

Dust forecasting models: Emission scheme

Scheme of the major wind erosion processes with saltation, creeping and suspension (due to sandblasting) in dependency of wind speed.

Extracted www.extension.purdu.edu/extmedia/AY/AY-271.html

Simple schemes

Formulation of vertical dust flux (F)

$$F = c \cdot f \cdot P(u_*^n, u_{*th})$$
 if $u_* > u_{*t}$

c: dimensional scale dependent constant proportinality f: relative surface area of each soil particle fraction (which includes de source function, δ) u_* : friction velocity u_{*t} : threshold friction velocity P: polinomial of degree n

Study	Scheme
Uno et al. (2001) CFORS	$F = c u_{10}^2 (u_{10} - u_{10t})$
Liu and Westphal (2001) COAMPS	$F = f u_{10}^2 (u_{10} - u_{10t})$
Liu and Westphal (2001) COAMPS	$F = f c u_*^4$

Dust forecasting models: Emission scheme

Dust storm generation requires:

- High wind
- Wind shear and turbulence
- Unstable boundary layer

(a) Conventional view of dust emission via saltation bombardment; (b) Illustration of convective turbulent dust emission. Extracted from Shao (2008)

Friction velocity is the parameter used by dust models since it expresses wind speed, turbulence and stability

Threshold friction velocity vs particle radius \rightarrow

Dust forecasting models: Emission scheme

- Threshold friction velocity u_{*thr} is defined as the velocity above which soil particles begin to move in saltation flux
- Depends on soil grain size, soil moisture and roughness among others

$$u_{*thr} (D_{p}, z_{0}, w) = \frac{u_{*dry} (D_{p})}{R(z_{0}, z_{0s})} \cdot H(w)$$

Simple schemes

Limitations

- Oversimplified physical representation of dust emission.
- Normalization constant C is not known
- Erodible fraction is prescribed for predefined dust sources
- Threshold friction velocity is usually a fixed value (no dependence on the land surface properties)
- Assuming constant threshold friction velocity will introduce bias in the modelling of the timing and intensity of dust events.
- The prescribed constant is model dependent and can result in large discrepancies in calculated dust loadings between different models.

Dust forecasting models: Emission scheme

Physically based schemes

Physically-based **dust emission schemes** employ different parameterizations of the related physical processes, as well as require different input data.

Parent soil size distribution are used to calculate horizontal flux (H). Dust horizontal concentration is calculated distributing the vertical flux (F) of the first two parent soil categories (clay and silt) over the model particle bins.

Parameterizations of mass size distribution of the model at sources

Modal

Sectorial

Dust models simulate the atmospheric dust cycle and involves a variety of processes:

Dust forecasting models: Dispersion

Movie from the COMET program at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR)

Dust forecasting models: Dispersion

Dust models simulate the atmospheric dust cycle and involves a variety of processes:

Dust forecasting models: Advection and diffusion

Movie from the COMET program at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR)

Dust models simulate the atmospheric dust cycle and involves a variety of processes:

Sedimentation and dry deposition

Movie from the COMET program at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR)

- **Dry deposition** depends on the variety of factors such as meteorological conditions near the surface, physicochemical properties of mineral dust and the nature of the surface itself.
- Sedimentation (or gravitational settling) is the settling of particles fall down due to gravity → Very large particles will settle out quickly

Dry deposition velocity is represented as 3 resistances in series parallel to a second pathway - gravitational settling velocity:

$$v_d = \frac{1}{r_a + r_b + r_c} \longrightarrow F_d = -C \cdot v_d$$

- Aerodynamic resistance to transfer (r_a)
- Quasi-laminar surface layer resistance (r_b)
- Resistance to surface uptake (r_c)

Dust models simulate the atmospheric dust cycle and involves a variety of processes:

Dust forecasting models: Wet deposition scheme

Wet scavenging

Image from the COMET program at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR)

Dust forecasting models: Wet deposition scheme

In-cloud scavenging:

- **nucleation scavenging** by activation and growth of particles to cloud droplets

- **collection** of a non-activated fraction of particles by coagulation with cloud and rain droplets

Below-cloud scavenging:

Collection by falling raindrops of particles under their collision.

Decrease rate of the aerosol concentration due to **wet scavenging** in a layer with uniform concentration can be described by a first-order equation:

$$\frac{\partial C}{\partial t} = -\lambda C$$

The scavenging coefficient (C) depends on:

- the particle size and solubility
- the collectors size distribution and fall speeds
- precipitation rate and phase (rain or snow).

Existing problems

- **Rainout:** The soluble fraction of dust is not well known, so assigned scavenging efficiencies do not reflect regional specifics of dust properties and their dynamics (i.e., mineralogical composition, aging, etc.)
- Washout: Problems in modelling of clouds and precipitation remain a long-standing issue. Precipitation rates during violent convective rains are often underpredicted.
- **Dry versus wet deposition:** The relative importance of dry or wet deposition processes differs regionally and depends on the meteorological conditions and used parameterizations.

Main differences between dust models

- 1. Atmospheric driver
- 2. Meteorological input files IBC
- 3. Emission scheme
- 4. Geographic-information database
- 5. Land-surface scheme
- 6. Dry deposition scheme
- 7. Wet depositioon scheme
- 8. Spatio-temporal resolution
- 9. Data assimilation

10.

Dust forecasting models

Experimental campaigns: BODEX 2005 (Todd et al. 2008, JGR)

First regional model intercomparison in the Bodélé hot spot

Strong differences between models!!!! → Meteorology and emission scheme

Earth Sciences Department: Mineral Dust Modelling

(Dust daily forecast:

- BSC-DREAM8b

http://www.bsc.es/projects/earthscience/BSC-DREAM/

– NMMB/BSC-Dust:

http://www.bsc.es/projects/earthscience/NMMB-BSC-DUST/

- Mineral dust database: Files download

http://www.bsc.es/earth-sciences/mineral-dust/catalogo-datos-dust/

- Daily forecasts in 2 domains:
 - North Africa-Middle East-Europe (0.3^o x 0.3^o)
 - East Asia (0.5º x 0.5º)

Main features

- 8 particle size bin distribution (0.1 -10 μ m)
- Dust radiative feedbacks (Pérez et al., 2006)
- Latest developments (version 2.0; Basart et al. 2012a)
 - Updated dry deposition

entro Nacional de Supercomputación

Inclusion of a preferential source mask

Barcelona Supercomputing http://www.bsc.es/projects/earthscience/BSC-DREAM/

Included in the CALIOPE AQ system

- Near-real time evaluation
- Dust forecast evaluation studies:
 - Single events in the *Mediterranean* (e.g., Papayannis et al., 2005; Pérez et al., 2006)
 - Experimental campaigns in *source* regions
 - BoDEX 2005 (Todd et al., 2008)
 - SAMUM 2006 (Haustein et al., 2009)
 - Anual evaluation over North Africa, Mediterranean and Middle East (Pay et al., 2011; Basart et al., 2012b)

Dust forecasting models: The BSC-DREAM8b v2.0

Inclusion of new satellite aerosol products: OMI, CALIPSO and MISR

Dust forecasting models: DREAM and BSC-DREAM8b

Study Region	Reference	Model version	Time period	
North Africa-Middle	Basart el al. (2009)	BSC-DREAM8b	Annual (2004)	
East-Europe	Basart et al. (2012b)	BSC-DREAM8b	Annual (2004)	
	Papayannis et al. (2008)	DREAM	Long-term (2000-2002)	
Europe	Pay et al. (2010)	BSC-DREAM8b	Annual (2004)	
	Basart et al. (2012a)	BSC-DREAM8b	Annual (2004)	
Western Mediterranean	Pérez et al. (2006a)	BSC-DREAM8b	Dust event (April 2002)	
	Pérez et al. (2006b)	BSC-DREAM8b	Dust event (June 2002)	
Spain	Jiménez-Guerrero et al. (2008)	DREAM	Dust event (June-July 2006)	
opum	Pay et al. (2012)	BSC-DREAM8b	Annual (2004)	
Portugal	Borrego et al. (2011)	BSC-DREAM8b	Annual (2010)	
Italy	Kishcha et al. (2007)	L (2007) DREAM Long-term (2001-2003)		
Eastern Mediterranean	Balis et al. (2006)	DREAM	Dust event (August-September 2003)	
	Papayannis et al. (2009)	DREAM	Long-term (2004-2006)	
Greece	Amiridis et al. (2009)	BSC-DREAM8b	Dust event (May 2008)	
	Papanastasiou et al. (2010)	BSC-DREAM8b	Long-term (2001-2007)	
Central Europe	Klein et al. (2010)	BSC-DREAM8b	Dust event (May-June 2008)	
Georgia	Kokkalis et al. (2012)	BSC-DREAM8b	Dust event (May 2009)	
Sub-Tropical Eastern North Atlantic	Alonso-Pérez et al. (2011)	DREAM	Long-term (1958-2006)	
North-Central Africa	Todd et al. (2009)	BSC-DREAM8b Dust event (BodEx, March 2005)		
Morocco	Haustein et al. (2009)	BSC-DREAM8b	Dust event (SAMUM, May-June 2006)	

Dust forecasting models: BSC dust forecasting models

http://www.bsc.es/earth-sciences/mineral-dust/

The NMMB/BSC-CTM Project

The Non-hydrostatic Multiscale Model (NMMB) :

- Under development at NCEP (Janjic, 2005; Janjic and Black, 2007) as evolution of the WRF-NMM model
- Developed within the Earth System Modeling Framework (ESMF)
- Arakawa B grid and regular (global) or rotated (regional) lat/lon coordinate
- NMMB is the regional operational meteorological model in NCEP since October 2011.
- Unified model for a broad range of spatial and temporal scales

Multiscale (global to regional) and *Nonhydrostatic* (up to 1km² lat-lon resolution)

NMMB/BSC-Chemical Transport Model

- Fully **on-line** access coupling: feedback processes allowed
- *Multiscale*: global to regional scales allowed

The NMMB/BSC-Dust model

DAILY OPERATIONAL DUST FORECAST AT BSC

http://www.bsc.es/earth-sciences/NMMB-BSC-DUST/

NRT Evaluation

20140516 - 20140525 ---- AERONET Site: Lampedusa

NMMB/BSC-CTM collaborations

Mineral dust forecasts for SDS-WAS North Africa, Middle East and Europe Regional Center activies

http://sds-was.aemet.es/

\cdot The ICAP global-model intercomparison project

http://www.nrlmry.navy.mil/aerosol/icap.1087.php

• The Charmex Chemistry-Aerosol Mediterranean experiment

• The AQMEII on-line Air Quality model intercomparison project

Barcelona Dust Forecasting Center (http://dust.aemet.es/)

BARCELONA DUST FORECAST CENTER									
НОМЕ	ABOUT US	FORECAST	EVALUATION	METHODS	NEWS	EVENTS	CONTACT		
NEWSLETTER Keep up to activ	date with our vities! Name r email scribe	Barce The Cent dust fore Middle Ea Read Mon	Iona Dust Fo er will release ope casts for Northern ast and Europe re	orecast Ce rational Africa,	enter start	s operatio	ns		
SEARCH Search Site	Search	••••			10				
About us		- NMME	Barcelona Dust Fo 3/BSC-Dust Res:0.1°x0.1°	orecast Center Dust Surface Conc. (µg/m³)				
 Forecast Evaluation Mothods 		60°N	n: 12n 19 MAY 2014 Valid	: 1on 20 MAY 2014 (H+	20000	Dust fored	cast		
> Methods		40°N -	17-83	F. Fr	500	Africa, Middle E	ast and Europe		

First Specialized Center for Mineral Dust Prediction of WMO NMMB/BSC-Dust selected to provide operational forecasts at high resolution (10km) for NAMEE region

The NMMB/BSC-Dust model (Pérez et al. 2011)

EMISSION SCHEME

 Source function: includes update land databases (vegetation fraction, land textures, soil types and albedo) and a preferential "topographic" source mask

 $\delta = USGS \cdot PREF \cdot (1 - VEGFRAC) \cdot (1 - SnowCover)$

 Physically-based emission scheme which includes saltation and sandblasting

Image from Carlos Pérez

NMMB/BSC-Dust: Model configurations

Experiment 0.10

NAMEE domain: 31ºW-71ºE and 0º-70ºN (*)

Vertical resolution: 40 σ-hybrid layers

Horizontal spatial resolution: 0.10° x 0.10°

*Grid points: 1021 * 701*

Fundamental time step: 25s

Execution time in MNv3:

24h simulation with 260 nodes (256 computation + 4 I/O): 2.26 hours

Experiment 0.25

NAMEE domain: 31°W-71°E and 0°-70°N (*) Vertical resolution: 40 σ-hybrid layers Horizontal spatial resolution: **0.25° x 0.25°** *Grid points: 409 * 281* Fundamental time step: 40s Execution time in MNv3: 24h simulation with 260 nodes (256 computation + 4 I/O): **18 minutes**

Experiment Glob.

Global domain: 180°W-180°E and 90°S-90°N (*) Vertical resolution: 40 σ-hybrid layers Horizontal spatial resolution: **1.40625° x 1.0°** *Grid points: 257*181* Fundamental time step: 180s Execution time in MNv3:

24h simulation with 260 nodes (256 computation + 4 I/O): **34 minutes**

(*) NOTE: The coordinate grid box is defined taking into account the maximum and minimum latitude and longitude values with respect the center point of the domain.

NMMB/BSC-CTM v2.0

Full Year 2011

Cold start without data assimilation

Initial conditions from NCEP/FNL meteorological analysis (1ºx1º) at OUTC and boundary conditions every 6 h

The calibration factor of the emission flux applied is VFLUX=VFLUX*0.255 (from Pérez et al. 2011)

Model outputs time resolution: 3-hourly
NMMB/BSC-Dust: AOD seasonal averages comparison

~-

NMMB/BSC-Dust: AOD AERONET comparison

- AOD and AE (Level 2.0) of 50 stations distributed in 9 regions
- 3-hourly averages (\pm 90 min around the selected modelled hour)

Izana : AOD for 2011 - NMMB/BSC-CTM v2.0 vs direct-sun AERONET Level 2.0

NMMB/BSC-Dust: AOD AERONET comparison

- AOD and AE (Level 2.0) of 50 stations distributed in 9 regions
- 3-hourly averages (± 90 min around the selected modelled hour)
- Filter applied to the AERONET observations
 - AE < 0.75 is considered in the calculations
 - AE >= 1.2 we assign AOD observe = 0

	Exp. 0.10			Exp. 0.25			Exp. Glob.					
Regions	NDATA	r	RMSE	MB	NDATA	r	RMSE	MB	NDATA	r	RMSE	MB
Sahara-Sahel	3266	0,54	0,38	-0,02	3337	0,56	0,36	-0,05	3337	0,52	0,41	-0,02
E.Trop.N.Atl	2177	0,68	0,27	-0,17	2218	0,70	0,26	-0,17	2218	0,47	0,30	-0,14
E.sub-Trop.N.Atl	1237	0,69	0,19	-0,12	1274	0,72	0,19	-0,12	1274	0,69	0,21	-0,13
NW. Africa	2209	0,77	0,10	-0,06	2254	0,76	0,10	-0,05	2254	0,72	0,11	-0,05
W.IP	4805	0,73	0,09	-0,03	4941	0,76	0,09	-0,03	4941	0,69	0,10	-0,02
E.IP-W.Med	4821	0,67	0,07	-0,01	4971	0,69	0,07	-0,01	4971	0,64	0,07	0,01
C. Med	5453	0,66	0,09	-0,01	5595	0,67	0,08	-0,01	5595	0,56	0,10	0,01
E. Med	4089	0,51	0,12	-0,01	4176	0,54	0,12	-0,01	4176	0,54	0,12	0,00
West Asia	1238	0,34	0,45	-0,30	1240	0,37	0,43	-0,30	1240	0,37	0,43	-0,31
NAMEE	29295	0,73	0,20	-0,05	29446	0,75	0,19	-0,05	29446	0,70	0,20	-0,03

- In general, the skill scores obtained from the 3 model configurations (Exp. 0.10, Exp. 0.25 and Exp. Glob.) are in the same ranges.
 - The different model configurations show the same seasonal/annual behaviour in all the regions
 - Slighlty decrease of the skill scores of Exp. 0.10 and Exp. Glob. respect Exp. 0.25 in all the study region (except in NW. Africa for Exp. 0.10)

NMMB/BSC-Dust: AOD AERONET comparison

- AOD and AE (Level 2.0) of 50 stations distributed in 9 regions
- 3-hourly averages (± 90 min around the selected modelled hour)

0.8

-0.2

-0.3

-0.4

-0.5

-0.6 L

F M

N D

- Filter applied to the AERONET observations
 - AE < 0.75 is considered in the calculations
 - AE >= 1.2 we assign AOD observe = 0

RMSE year 20

0.8

0.7

0.6

0.5

0.4

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

Exp. 0.10

RMSE year 0.7 0.6 0.5 0.4 0.3 0.2 0.1 М А М J J А s 0 0.6 0.5 MB year 2011 0.4 0.3 0.2 0.1 -0.1

AMJJASO

N D

- Exp. 0.10 and Exp. 0.25 show similar results along the year

- Overestimations in Sahel during winter
 → low-level instrusions
- Underestimations in Sahara during summer
 - \rightarrow Convective phenomena
 - \rightarrow *Missing sources*
 - \rightarrow Wet deposition scheme
 - ightarrow Input meteorological data
- Underestimations in West Asia during springtime
 → under research
- Exp. 0.10 shows a decrease of the RMSE and MB in May in Sahara-Sahel region.
 → under research

Supercomputing Center Centro Nacional de Supercomputación

FMAMJJASO

NMMB/BSC-Dust: Towards high-resolution simulations

NMMB/BSC-Dust: Towards high-resolution simulations

Impact of the topography on dust transport

Supercomputing Center Centro Nacional de Supercomputación MSG/RGB March 19, 2012

Basart and Baldasano, submitted to Aeolian Research

NMMB/BSC-Dust: Towards high-resolution simulations

The impact of model resolution in dust propagation in a complex terrain region such as West Asia: **19**th **March 2012**

Exp. 0.33^o x 0.33^o

40°N

35°N

30°N

20°N

15°N

10°N ► 35°E

40°E

45°E

50°E

55°E

60°E

65°E

Basart and Baldasano, submitted to Aeolian Research 79

Barcelona Dust Forecasting Center (http://dust.aemet.es/)

BARCELO	DNA DUST		rocenter roompeting Machine de Beentempetieder	F	- 83	IMO SPS-WAS II N	Log in
НОМЕ	ABOUT US	FORECAST	EVALUATION	METHODS	NEWS	EVENTS	CONTACT
NEWSLETTER Keep up to activ	date with our vities! Name r email scribe	Barce The Cent dust fore Middle Ea Read Mon	Iona Dust Fo er will release ope casts for Northern ast and Europe re	orecast Ce rational Africa,	enter start	s operatio	ns
SEARCH Search Site	Search	••••			10		
About us		- NMME	Barcelona Dust Fo 3/BSC-Dust Res:0.1°x0.1°	orecast Center Dust Surface Conc. (µg/m³)		
 Forecast Evaluation Mothods 		60°N	n: 12n 19 MAY 2014 Valid	: 1on 20 MAY 2014 (H+	20000	Dust fored	cast
> Methods		40°N -	17-83	F. Fr	500	Africa, Middle E	ast and Europe

First Specialized Center for Mineral Dust Prediction of WMO NMMB/BSC-Dust selected to provide operational forecasts at high resolution (10km) for NAMEE region

BDFC (http://dust.aemet.es/)

Barcelona Dust Forecast Center NMMB/BSC-Dust Res:0.1°x0.1° Dust Surface Conc. (μg/m³) Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00)

Barcelona Dust Forecast Center NMMB/BSC-Dust Res:0.1°x0.1° Dust Surface Ext. (Mm⁻¹) Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00)

BDFC : NRT Evaluation using AERONET

Monthly scores

Date 2014-09

Methods: AERONET-based scores

Sep 2014. Dust Optical Depth. Threshold Angstrom Exponent = 0.600

	BIAS	ROOT MEAN SQUARE ERROR	CORRELATION COEFFICIENT	FRACTIONAL GROSS ERROR	NUMBER OF CASES
Sahel/Sahara show stations	-0.23	0.35	0.39	1.00	550
Middle East show stations	-0.17	0.18	0.30	0.91	19
Mediterranean show stations	-0.26	0.33	0.27	1.50	414
TOTAL	-0.24	0.34	0.36	1.21	983

- Bias
- RMSE
- correlation coefficient
- FGE

Calculations evaluation metrics are done for:

- monthly/seasonal/annual
- sites and regions

SDS-WAS NA-ME-E RC (http://sds-was.aemet.es/)

MORTHE	RN AFRICA-M	Log in IDDLE EAST-EUROPE (NA-ME-E) REGIONAL CENTER
World Meteorological Organization Water elements	Entertainer Entertainer Entertainer Entertainer Entertainer Entertainer	WIMO SDS WAS [] Asia Regional Center
HOME ABOUT US FOREC	AST & PRODUCTS PR	OJECTS & RESEARCH MATERIALS NEWS EVENTS CONTACT US
Home	You are here: Home	2
> About us	Northern Afr	ica-Middle East-Europe (NA-ME-E) Regional
> Forecast & Products	Center by Francesco Benincasa —	last modified May 29, 2012 03:33 PM
 Projects & Research Materials Nume 	Outstanding II Lectures on At	FORECAST AND PRODUCTS
 > Events 	WMO SDS-WAS N be a Regional Sp	Data exchange
Search Search Site Search	Guidance for fore	Joint visualization
Latest News	Compared dust f	 Common forecast evaluation (AERONET and
Dust storm over Alaska Oct 31, 2012	Dust forecasts	MODIS)
The WMO SDS-WAS programme presented at the V Afrimet conference Oct 26, 2012	WMO SDS-WAS MEDIAN Du Run: -h 03 NOV 2 60"N	Generation of multimodel products
Link to NGAC dust forecasts Oct 16, 2012	40"N	Calculation of monthly evaluation metrics
Upcoming Events	20"N	New sources of data for model evaluation
3rd. ChArMEx International Workshop	20"N	
Nov 05, 2012 - Nov 08, 2012 — Cargèse, France	Compa	Sharing model output data files
II Lectures on atmospheric mineral dust Nov 05, 2012 - Nov 09, 2012 – Barcelona, Spain	Dust observation	Time-averaged products
International Conference		

sdswas@aemet.es

SDS-WAS: Dust models

	Barcelona Supercomputing	MODEL	RUN TIME	DOMAIN	DATA ASSIMILATION
LMD	Center Centro Nacional de Supercompl	BSC-DREAM8b	12	Regional	No
	\frown	CHIMERE	00	Regional	No
		LMDzT-INCA	00	Global	No
LSCE	composition & climate	MACC	00	Global	MODIS AOD
		DREAM-NMME- MACC	12	Regional	MACC analysis
Met Office	C SEFACCC	NMMB/BSC-Dust	12	Regional	No
NASA	NCEPT ERS FOR ENVIRONMENTAL ARE	MetUM	00	Global	MODIS AOD
		GEOS-5	00	Global	MODIS reflectances
Consigl Naziona	io ale delle	NGAC	00	Global	No
Ricerch	е	EMA REG CM4	12	Regional	No
BSC BSC Centre	e lona rcomputing er Nacional de Supercomputación	DREAMABOL	12	Regional	No

SDS-WAS: Surface concentration joint visualization

BSC Barcelona Supercomputin Center Centro Nacional de Supercomputación

SDS-WAS: AOD joint visualization

Barcelona Supercomputin Centro Centro Nacional de Supercomputación

SDS-WAS: Generation of multi-model products

WMO SDS-WAS N.Africa-Middle East-Europe RC WMO SDS-WAS N Africa-Middle East-Europe RC WMO SDS-WAS N Africa-Middle East-Europe RC WMO SDS-WAS N Africa-Middle Fast-Europe BC MEDIAN Dust Surface Concentration (ug/m³ MEAN Dust Surface Concentration (µg/m³) MEDIAN Dust AOD MEAN Dust AOD Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00) Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00) Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00) Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00) 20000 000 40°N 40° 20°N WMO SDS-WAS N.Africa-Middle East-Europe RC WMO SDS-WAS N Africa-Middle East-Europe RC WMO SDS-WAS N.Africa-Middle East-Europe RC WMO SDS-WAS N.Africa-Middle East-Europe RC STDEV Dust Surface Concentration (µg/m³) RANGE Dust Surface Concentration (µg/m³) STDEV Dust AOD RANGE Dust AOD Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00) Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00) Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00) Run: 12h 06 OCT 2014 Valid: 12h 06 OCT 2014 (H+00) 0000 000 50°I 40.25

AOD at 550nm

Surface concentration

from 6-Oct-2014 12:00 to 9-Oct-2014 00:00

Model outputs are bi-linearly interpolated to a common 0.5^ox0.5^o grid mesh. Then, different multi-model products are generated:

CENTRALITY: median - mean

SPREAD: standard deviation – range of variation

Barcelona

SDS-WAS: Dust observations

New sources of data for model evaluation

- Visibility
- MSG/SEVIRI
- MODIS
- OMI
- CALIPSO
- PARASOL
- MPLNET
- PM₁₀

2012-03-27 12:40:40 CLICK ON A STATION FOR TIME OF OBSERVATION

SDS-WAS: Model intercomparison

Barcelona Supercomputing Center Centro Nacional de Supercomputación

http://sds-was.aemet.es

SDS-WAS: NRT Evaluation using AERONET

Model evaluation metrics (bias, correlation, RMSE and FGE) are calculated:

- By regions: NA-ME-E, Sahel/Sahara, Middle East and Mediterranean
- By time periods: monthly, seasonal and annual

SDS-WAS: NRT Evaluation using AERONET

You are here: Home > Forecast & Products > Forecast evaluation > Model evaluation metrics. Annual scores

Model evaluation metrics. Annual scores

by Francesco Benincasa — last modified Jun 25, 2013 10:34 AM

Date: - Select Year - 🔻

Jan 2013 - Dec 2013. Dust Optical Depth.

Threshold Angstrom Exponent = 0.600

BIAS

	BSC_ DREAM8b	MACC- ECMWF	DREAM8- NMME-MACC	NMMB/ BSC-Dust	U.K. Met Office	NASA GEOS-5	NCEP NGAC	MEDIAN
Sahel/Sahara show stations	-0.19	-0.10	-0.04	-0.12	-0.06	-0.11	0.00	-0.10
Middle East show stations	-0.19	-0.11	0.00	-0.24	-0.06	-0.18	-0.16	-0.16
Mediterranean show stations	-0.15	-0.13	-0.08	-0.17	-0.09	-0.15	-0.07	-0.13
TOTAL	-0.18	-0.11	-0.05	-0.15	-0.07	-0.13	-0.04	-0.12

ROOT MEAN SQUARE ERROR

	BSC_ DREAM8b	MACC- ECMWF	DREAM8- NMME-MACC	NMMB/ BSC-Dust	U.K. Met Office	NASA GEOS-5	NCEP NGAC	MEDIAN
Sahel/Sahara show stations	0.38	0.34	0.34	0.35	0.33	0.33	0.31	0.32

A set of evaluation metrics are selected:

- Bias
- RMSE
- correlation coefficient
- FGE

Calculations evaluation metrics are done for:

- monthly/seasonal/annual
- sites and regions

SDS-WAS: NRT Evaluation using satellite aerosol products

24 April 2013

SDS-WAS: NRT Evaluation using MODIS

19th August 2013

	BIAS	ROOT MEAN SQUARE ERROR	CORRELATION COEFFICIENT	FRACTIONAL GROSS ERROR	NUMBER OF CASES
BSC_ DREAM8b	-0.16	0.21	0.70	0.87	1220
NMMB/BSC- Dust	-0.13	0.20	0.68	0.81	1038
NCEP NGAC	0.14	0.21	0.78	0.41	1228

SDS-WAS: NRT Evaluation using MODIS Deep Blue

WMO SDS-WAS N.Africa-Middle East-Europe RC MODIS DEEPBLUE AOD₅₅₀ - AUG 2013

	BIAS	ROOT MEAN SQUARE ERROR	CORRELATION COEFFICIENT	FRACTIONAL GROSS ERROR	NUMBER OF CASES
BSC_ DREAM8b	- 0.17	0.31	0.28	0.96	42618
NMMB/BSC- Dust	-0.20	0.33	0.29	1.05	41049
NCEP NGAC	-0.06	0.29	0.32	0.64	42664

Centro Nacional de Supercomputación

SDS-WAS: NRT Evaluation using MODIS Deep Blue

WMO SDS-WAS N.Africa-Middle East-Europe RC NMMB-BSC/Dust - Jun/Aug - correlation

Centro Nacional de Supercomputación

Multimodel MEDIAN

WMO SDS-WAS N.Africa-Middle East-Europe RC multimodel MEDIAN - Jun/Aug 2013 - correlation

SDS-WAS: NRT Evaluation using MODIS Deep Blue

0.75

0.50

0.25

-0.00

Multimodel MEDIAN

WMO SDS-WAS N.Africa-Middle East-Europe RC multimodel MEDIAN - Jun/Aug - F.G.E.

FGE

RMSE

20°N

10°N

10°W

0°

10°E

20°E

30°E

40°E

50°E

SDS-WAS: Evaluation using VISIBILITY data

Supercomputing Center

Centro Nacional de Supercomputación

AGADEZ SOUTH, Niger March 2013

SDS-WAS: Model intercomparison

http://sds-was.aemet.es

SDS-WAS: Model intercomparison April 2011

MSG/SEVIRI RGB product 7 April Courtesy of EUMETSAT

- The selected dust event corresponds to the one which occurred between the 5th and 11th of April of 2011.
- Participating models: BSC-DREAM8b, NMMB/BSC-Dust, ECMWF-MACC, UKMetOffice-UM and NMME-DREAM-MACC
- Comparison of each forecast (at 24, 48 and 72h) output to in-situ measurements of AOD (from AERONET), surface concentration (PM) and satellite retrieved AOD (MODIS, CALIPSO) and meteorology.

(Huneeus et al., in preparation)

Contact: Nicolás Huneeus (nhuneeus@dgf.uchile.cl)

SDS-WAS NA-ME-E RC (http://sds-was.aemet.es/)

Forecasting the North African dust outbreaks towards Europe occurred in April 2011 (Hunneus et al., in preparation)

Model AOD at 550 μm against AERONET

SDS-WAS NA-ME-E RC (http://sds-was.aemet.es/)

Forecasting the North African dust outbreaks towards Europe occurred in April 2011

(Hunneus et al., in preparation)

BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación Forecasting the North African dust outbreaks towards Europe occurred in April 2011 (Hunneus et al., in preparation)

SDS-WAS: Lidar and models intercomparison

69 dust cases between Jan 2011 – Jun 2013

BSC-DREAM8b v2 NMMB-BSC/Dust

DREAM8-NMME-MACC

BOLCHEM

Contact: Ioannis Binietoglou (ioannis@inoe.ro)

Case study of the small-scale extreme dust storm occurred in **Tehran** on **2nd June 2014**, at 5:30 PM local time, lasting less than 2 hours according to public evidence. Based on public news, the dust storm caused several deaths, reduction of visibility to several

tenths meters in the city, and adverse disturbance of the public traffic. The blowing wind reached 110 km/h.

Contact: Slobodan Nickovic (nickovic@gmail.com)

SDS-WAS: Files download

BSC-DREA	AM8b v2.0	DOWNLOAD FILE	s	Model	website	Barcelona Supercomput Center Centor Nacional de	ing Supercomputación
MACC-ECM	1WF	DOWNLOAD FILE	s	Model	website	Constanting at more than the	
DREAM-N	ММЕ-МАСС	DOWNLOAD FILE	s	Model	website		EEVCCC
NMMB/BS	SC-Dust	DOWNLOAD FILE	s	Model	website	Barcelena Supercompute Centor Centor Nacional de	ing Supercomputación
NASA-GEO	0S-5	DOWNLOAD FILE	s	Model	website	NASA	
NCEP-NGA	1C	DOWNLOAD FILE	s	Model	website	NCEP	-
Multimo	Title		Si	ze	Modifie	ed	- AEMET
	latest - (download all)		4.0	kB	Apr 18,	2013 09:00 PM	-
	2013 -	(download all)	4.0	kB	Apr 01,	2013 09:00 PM	
	2012 - (download all)		4.0	kB	Apr 08,	2013 04:30 PM	

Daily forecasts of dust surface concentration and dust optical depth will be displayed on a page together with a menu to allow visualization of the archived products and/or download of the numerical files for a selected range of dates.

 Access to the download pages shall be restricted to those groups that authorize the exchange of their own data

Seminar by Francesco Benincasa

www.bsc.es

MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC

Thank you

Acknowlegde to José M^a Baldasano, Francesco Benincasa, Enza DiTomaso, Antonis Gkikas, Oriol Jorba, Kim Serradell, Enric Terradellas, Lluís Vendrell, Michele Spada, Vincenzo Oviso, Miguel Castrillo, David Carrió and Georgios Markomanolis.

Special thanks to Carlos Pérez García-Pando, K. Haustein and Carla Gama.

The source of some of the movies and information in this presentation is the COMET® Website at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR), sponsored in part through cooperative agreement(s) with the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce (DOC) © 2007-2011 University Corporation for Atmospheric Research. All Rights Reserved. Satellite data used in this presentation were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. We acknowledge the NASA and AERONET mission scientists and Principal Investigators who provided the data used in this research effort.