I Review of Evidence on Dust and Health II Exposure assessment in the GBD 2013

Michael Brauer

THE UNIVERSITY OF BRITISH COLUMBIA

1st AFRICA/MIDDLE-EAST EXPERT MEETING AND WORKSHOP ON THE HEALTH IMPACT OF AIRBORNE DUST AMMAN, JORDAN, 2-5 NOVEMBER 2015

Coarse PM

- "suggestive evidence of a causal relationship between short-term exposure to coarse PM and cardiovascular and respiratory health effects and mortality". "not sufficient evidence to draw conclusions on the health effects of long-term exposure to coarse PM". (EPA ISA, 2009)
- "...short-term exposures to coarse particles (including crustal material) are associated with adverse respiratory and cardiovascular effects on health, including premature mortality...hardly any long-term studies are available for coarse particles." (REVIHAAP*, 2013)

"toxicological studies report that coarse particles can be as toxic as PM_{2.5} on a mass basis. The difference in risk between coarse and fine PM can, at least partially, be explained by differences in intake and different biological mechanisms." (REVIHAAP, 2013)

 "Suggestive evidence of increased morbidity and mortality in relation to higher short-term PM_{10-2.5} concentrations, with stronger relationships for respiratory than cardiovascular endpoints.... While suggestive evidence was found of increased mortality with long-term PM_{10-2.5} concentrations, these associations were not robust to control for PM_{2.5}." (Adar et al., 2014)

Adar SD, Filigrana PA, Clements N, Peel JL. <u>Ambient Coarse Particulate Matter and Human Health: A Systematic Review and Meta-Analysis.</u>² Curr Environ Health Rep. 2014 Aug 8;1:258-274: *Review of EVIdence on Health Aspects of Air Pollution. 2013

Coarse PM – Short Term Studies

Cardiovascular Mortality

Respiratory Mortality

Total Mortality

Incidence Rate Ratio per 10 µg/m³

1.06

Incidence Rate Ratio per 10 µg/m³

Incidence Rate Ratio per 10 µg/m³

Coarse PM – Long Term Studies

Adar SD, Filigrana PA, Clements N, Peel JL. <u>Ambient Coarse Particulate Matter and Human Health: A Systematic Review and Meta-Analysis.</u>4 Curr Environ Health Rep. 2014 Aug 8;1:258-274

Windblown Mineral Dust

REVIHAAP – Desert Dust

- Several studies report associations between short-term exposure to PM₁₀ or PM_{10-2.5} and mortality during desert dust episodes.
- The results for cause-specific mortality have not been fully consistent for PM_{10-2.5}:
 - Taiwan: + cardiovascular (and natural); respiratory
 - Rome: + cardiovascular; + respiratory.
- In most studies, PM₁₀ or PM_{10-2.5} (but not PM_{2.5}) more strongly associated with mortality during desert dust episodes compared to other times
- Only two studies evaluated desert dust days and admissions.
 - Hong Kong: increased COPD (but not pneumonia or influenza) hospitalization during desert dust days
 - Cyprus: increased CVD (but nor respiratory) hospitalization during desert dust days
- Evidence for an effect of desert dust on human health is increasing, but at the moment it is not clear whether crustal, anthropogenic, or biological components of dust are most strongly associated with the effects.

Saharan Dust effects in Europe (2011)

Reference	Location	Population	Outcome	Identification of Sahara dust days	PM fraction	Causes	% Risk per 10 $\mu g/m^3$ (95% CI) p-value	$\%$ Risk per 10 $\mu g/m^3$ IR% (95% CI)
							Sahara dust days	Non-Sahara dust days
Tobías et al. (2011a)	Madrid, Spain	All ages	Mortality	Back trajectoty analysis	PM _{2.5}	TotM	2.9 (-1.1, 6.9) 0.0812	2.6 (0.6, 4.6)
					PM _{2.5-10}	TotM	2.8 (0.1, 5.8) 0.016	0.6(-1.1, 2.4)
Sajani et al. (2011)	Emilia–Romagna, Italy,	All ages	Mortality	PM number concentrations,	PM10	TotM	0.0 (-3.5, 3.6) 0.55	0.8 (0.0-1.6)
	Aug 2002-Dec 2006			back-trajectory analysis		CVD	-0.8 (-5.9, 4.6) 0.61	0.3 (-0.9, 1.5)
						RESP	-0.2 (-10.8, 11.5) 0.69	1.6(-0.9, 1.4)
Mallone et al. (2011)*	Rome, Italy,	Age > 35	Mortality	Lidar observations,	PM _{2.5}	TotM	2.5 (-0.9, 6.1) 0.31	0.7 (-0.9, 2.3)
	Feb 2001–Dec 2004			$PM_{10}/NO_2 > 0.6$		CAR	1.1 (-4.6, 7.2) 0.92	0.8 (-1.7, 3.4)
						CER	-2.5 (-9.1, 4.8) 0.51	-0.1 (-3.4, 3.4)
						CIRC	-0.7 (-5.5, 4.4) 0.53	0.9 (-1.3, 3.2)
						RESP	6.6 (-10.0, 27.0) 0.37	-1.7 (-9.9, 7.6)
					PM10	TotM	3.0 (-0.0, 6.0) 0.91	2.8 (1.2, 4.4)
						CAR	8.9 (3.5, 14.5) 0.02	1.9 (-0.7, 4.6)
						CER	1.6 (-4.7, 8.4) 0.72	3.0 (-1.7, 7.9)
						CIRC	5.5 (0.9, 10.2) 0.13	1.7 (-0.6, 4.0)
						RESP	2.5 (-11.9,19.3) 0.80	4.6 (-2.6, 12.4)
					PM _{2.5-10}	TotM	1.1 (-0.6, 2.7) 0.50	1.7 (0.7, 2.7)
						CAR	4.9 (2.2, 7.8) 0.01	0.5(-1.3, 2.2)
						CER	3.5 (0.6, 6.7) 0.53	2.3(-0.1, 4.8)
						CIRC	4.0 (1.6, 6.5) 0.04	1.1(-0.4, 2.7)
						RESP	9.8 (0.2, 21.3) 0.35	4.4(-2.1, 11.7)
Samoli et al. (2011a)	Athens, Greece,	All ages	Mortality	Aerosol optical depth,	PM10	TotM	-0.1 (-0.6, 0.4) p<0.005	1.0 (0.7, 1.4)
	2001-2006	0		back-trajectory analysis.		CVD ^a	0.2 (-0.4, 0.9) p<0.005	1.4 (1.8, 2.9)
				PM _{10 remote} /PM _{10 urban} >annual median		RES ^a	0.2 (-0.5, 2.7) p<0.005	1.5 (0.3, 2.8)
liménez et al. (2010)	Madrid, Spain.	Age > 75	Mortality	Events identified by the	PM _{2.5}	TotM	No statistical significant effects	2.0 (1.0, 4.0)
<u>,</u>	Jan 2003-Dec 2005			Spanish Ministry for the	PM10	CIRC	2.7 (1.4, 4.1) < 0.05	3.0 (3.0, 4.0)
	3			Environment and Rural &		RES	4.0 (1.7, 6.3) < 0.05	3.0 (0.0, 6.0)
				Marine Habitats		TotM	3.5 (0.9, 6.1) < 0.05	No statistical significant effects
						CIRC		9
						RESP		
Pérez et al. (2008)	Barcelona, Spain, Mar.	All ages	Mortality	Back-trajectory analysis,	PM _{2.5}	TotM	5.0 (0.5, 9.7) 0.56	3.5 (1.6, 5.5)
	2003-Dec. 2004	0		PM ₁₀ remote≥0.5×PM ₁₀ urban	PM _{2.5-10}	TotM	8.4 (1.5, 15.8) 0.05	1.4 (0.8, 3.4)
Middleton et al. (2008)	Nicosia, Cyprus,	All ages	Morbidity	Meteorological observations	PM10	MORD	4.8 (0.7, 9.0) NA	5.5 (3.5, 7.6) for the highest PM ₁₀
	Ian 1995-Dec 2003			(visibility), PM10 criteria				levels observed
	j			$(PM_{10} \ge 100 \text{ µg/m}^3)$		CVD-MORD	10.4 (-4.7, 27.9) NA	6.3 (0.0, 15.0) for the highest PM ₁₀
				(**************************************				levels observed
Samoli et al. (2011b)	Athens. Greece.	Age: 0-14	Morbidity	Same as Samoli et al. (2011b)	PM ₁₀	PAA	4.1 (0.1, 8.3) 0.41	2.1(-1.0, 5.2)
521100 CC 411 (2011D)	2001-2004		literorately	cance as sumon et an (2011b)			(, 0.0) 0111	
Tobías et al. (2011b)	Barcelona, Spain	All ages	Morbidity	NA	NA	MENG	39.2 (15.2, 68.1) < 0.05	NA
Dadvand et al. (2011)	Barcelona, Spain,		Pregnancy	PM10, NO2 trends.	PM ₁₀	BW ^b	-2.1(-5.8, 1.7)0.28	NA
	2003-2005			back-trajectory analysis		GAD ^b	0.5 (0.4, 0.6) < 0.01	NA
				see superiory analysis				

Karanasiou et al. Health effects from Sahara dust episodes in Europe: Literature review and research gaps. Environment International 47 (2012) 107–114. doi: 10.1016/j.envint.2012.06.012

Saharan dust effects in Europe (2011)

- 9 studies (4 with estimates for PM_{2.5})
- Diverse approaches to characterize dust events; different covariate adjustments
- Saharan (north/west vs south/central) origin
- Morbidity: Increased hospitalization on dust vs non-dust days
- Mortality: Inconsistent (especially PM₁₀, PM_{10-2.5}) but some evidence of slightly elevated risks on dust vs non-dust days

Karanasiou et al. Health effects from Sahara dust episodes in Europe: Literature review and research gaps. Environment International 47 (2012) 107–114. doi: 10.1016/j.envint.2012.06.012

Athens - Mortality

2.0

Dust days (N=141; 2001-2006):

- Back-trajectories (Sahara/Arabian peninsula)
- High regional PM
- High AOD
- Median PM_{10} : 47 µg/m³

Non-dust days (N=2050) Median PM_{10} : 39 µg/m³

Samoli et al. Does the presence of desert dust modify the effect of PM10 on mortality in Athens, Greece. Science of the Total Environmer 2011. 409:2049–2054. doi:10.1016/j.scitotenv.2011.02.031

Barcelona - Mortality

Perez et al. Coarse Particles From Saharan Dust and Daily Mortality. Epidemiology 2008;19: 800-807. doi: 10.1097/EDE.0b013e31818131cf

10

Rome - Mortality

Dust days identified by LIDAR, CTM, PM₁₀:NO₂ ratio

Dust days (no dust): Median PM_{10} =44 (35) µg/m³. $PM_{2.5}$ = 24 (21). $PM_{2.5-10}$ = 18 (14)

	PM _{2.5} (IQR = 12.8 μg/m ³)		PM _{2.5-10} (IQR = 10.8 μg/m ³)		PM ₁₀ (IQR = 19.8 μg/m ³)	
Cause of death	IR% (95% CI)	<i>p</i> -Value	IR% (95% CI)	<i>p</i> -Value	IR% (95% CI)	<i>p</i> -Value
Natural causes (lag 0-2) (ICD-9 codes 1-799)	1.24 (-0.65 to 3.17)		2.96 (1.23 to 4.72)		3.04 (1.53 to 4.56)	
Dust free Dust affected	0.91 (-1.09 to 2.94) 3.22 (-1.13 to 7.75)	0.316	3.33 (1.29 to 5.40) 2.07 (–1.07 to 5.31)	0.502	3.01 (1.29 to 4.75) 3.20 (–0.04 to 6.55)	0.914
Cardiac diseases (lag 0-2) (ICD-9 codes 390-429)	1.38 (-1.68 to 4.55)		3.72 (0.78 to 6.73)		4.04 (1.49 to 6.65)	
Dust free Dust affected	0.97 (-2.24 to 4.29) 1.37 (-5.92 to 9.21)	0.920	0.86 (-2.47 to 4.31) 9.73 (4.25 to 15.49)	0.005	2.09 (-0.76 to 5.02) 9.55 (3.81 to 15.61)	0.019
Cerebrovascular diseases (lag 0) (ICD-9 codes 430-438)	-0.32 (-4.26 to 3.78)		5.41 (1.74 to 9.22)		2.64 (-1.26 to 6.68)	
Dust free Dust affected	-0.07 (-4.29 to 4.33) -3.22 (-11.72 to 6.10)	0.514	4.58 (-0.18 to 9.58) 7.03 (1.22 to 13.18)	0.526	3.24 (–1.78 to 8.51) 1.71 (–5.05 to 8.95)	0.720
Diseases of the circulatory system (lag 0-2) (ICD-9 codes 390-459)	1.23 (-1.42 to 3.95)		4.06 (1.50 to 6.69)		2.99 (0.82 to 5.19)	
Dust free Dust affected	1.19 (-1.60 to 4.05) -0.91 (-7.04 to 5.62)	0.531	2.21 (-0.74 to 5.25) 7.93 (3.20 to 12.88)	0.039	1.82 (-0.61 to 4.32) 5.91 (1.02 to 11.03)	0.134
Diseases of the respiratory system (lag 0-5) (ICD-9 codes 460-519)	0.25 (-9.90 to 11.54)		12.65 (1.18 to 25.42)		4.97 (-2.18 to 12.63)	
Dust free Dust affected	–2.17 (–12.72 to 9.66) 8.38 (–12.66 to 34.49	0.368	8.67 (-4.14 to 23.19 19.43 (0.34 to 42.15)	0.349	5.00 (–2.80 to 13.43) 2.66 (–12.78 to 20.83)	0.798

Mallone et al. Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. <u>Environ Health Perspect.</u> 20111 Oct;119(10):1409-14. doi: <u>10.12989/ehp.1003026</u>.

Israel - Asthma

- Dust storm day: PM₁₀ > 2SD above background
 - Verified by review of synoptic meteorology
 - Non-dust days (N=2126), mean PM₁₀=38
 - Dust storm days (> 71 μg/m³, N=289), mean PM₁₀=170
 - Moderate/Severe days: > 200 μg/m³, N=58)

Asthma reliever medication dispe	ensation Mild dust storms#	p-value	Moderate-to-severe dust storms ¹	p-value	
All available data					
Dust storm day	1.05 (1.00–1.10)	0.029	0.94 (0.86-1.02)	0.162	
1 day after the dust storm	1.00 (0.96-1.05)	0.678	0.94 (0.87-1.02)	0.201	
2 days after the dust storm	1.00 (0.96-1.05)	0.713	0.96 (0.88-1.04)	0.344	
3 days after the dust storm	1.04 [1.00-1.09]	0.035	0.92 (0.85–0.99)	0.041	
Asthma hospitalization	Mild dust storm#	p-value	Moderate-to-severe dust storm [¶]	p-value	
All available data					
Dust storm day	1.10 (0.97-1.25)	0.145	1.01 (0.80-1.28)	0.889	
1 day after the dust storm	1.15 (1.02-1.30)	0.021	0.88 (0.69–1.13)	0.338	

Yitshak-Sade et al. Non-anthropogenic dust exposure and asthma medication purchase in children. Eur Respir J 2015; 45: 652–660. DOI:12 10.1183/09031936.00078614

Kuwait – Asthma hospitalization

- 569 dust storm days ($PM_{10} > 200 \ \mu g/m^3$)
- 39 very severe dust storm days (PM₁₀ > 1000 μg/m³)
- Asthma (lag 0): RR = 1.07 (1.02–1.12)
- Respiratory (lag 0): RR = 1.06 (1.04–1.08)

Caribbean - Asthma

Dust days (N=52; Satellite images. 2001-2006)

- Median PM_{2.5}: 13 μg/m³
- Median PM_{10-2.5}: 32 μg/m³

Non-dust days (N=285)

- Median PM_{2.5}: 9 μg/m³
- Median PM_{10-2.5}: 10 μg/m³

Cadelis et al. Short-Term Effects of the Particulate Pollutants Contained in Saharan Dust on the Visits of Children to the Emergency Depattment due to Asthmatic Conditions in Guadeloupe. PLoS ONE 2014. 9(3): e91136. doi:<u>10.1371/journal.pone.0091136</u>

Israel – COPD Hospitalization

PM10(µq/m3)

Dust storm days: 1.16 (1.08 -1.24)

• Mild days : 1.12 (1.03–1.21)

• Severe days: 1.27 (1.12–1.43)

95 % confidence Subgroup analysis within IRR of a dust p value age and gender groups storm^a interval for IRR Upper Lower Age Age <50 1.011 0.751 1.360 0.940 Age 50-70 1.110 1.008 1.222 0.032 Age>70 1.059 1.285 0.002 1.167 Gender Male 1.053 0.963 1.151 0.251 Female 1.278 1.148 1.427 < 0.001

Vodonos et al. The impact of desert dust exposures on hospitalizations due to exacerbation of chronic obstructive pulmonary disease. AirSQual Atmos Health (2014) 7:433–439. DOI <u>10.1007/s11869-014-0253-z</u>

Israel – Acute Coronary Hospitalization

Dust storm days: 1.05 (1.00-1.10)

 Increased OR for older women, Bedouin

Vodonos et al. Individual Effect Modifiers of Dust Exposure Effect on Cardiovascular Morbidity. PLoS ONE. 2015.10(9): e0137714. 16 DOI:<u>10.1371/journal.pone.0137714</u>

Taiwan – Acute MI Hospitalization

Dust days (N=46, 2000-2009)

High regional PM and PM_{10-2.5}

• Mean duration 2.89 days

	Number of daily AMI admissions											
	<45			45-64			65-74		>74			
	в	SE	p value	В	SE	p value	В	SE	p value	В	SE	p value
Intercept	1.8333	0.432	0.000****	9.6809	1.091	0.000***	10.9600	0.980	0.000****	7.6033	1.179	0.000****
Trend	0.0003	0.000	0.000***	0.0019	0.000	0.000***	0.0004	0.000	0.000***	0.0029	0.000	0.000****
Temperature	0.0005	0.010	0.957	-0.0223	0.025	0.380	-0.0994	0.023	0.000***	-0.1159	0.027	0.000***
CO	0.2761	0.454	0.544	-0.6921	1.153	0.548	-0.4351	1.036	0.674	0.0310	1.258	0.980
NO ₂	0.0012	0.015	0.936	0.0204	0.038	0.594	0.0422	0.034	0.219	0.1064	0.042	0.011*
Time since dust storm												
Day of dust storm	0.1206	0.149	0.419	-0.2248	0.374	0.548	-0.1962	0.336	0.559	0.0868	0.397	0.827
Postdust day 1	0.1845	0.236	0.434	0.2634	0.578	0.649	0.2090	0.518	0.687	0.7300	0.589	0.216
Postdust day 2	-0.0370	0.259	0.887	-0.6158	0.634	0.331	0.2141	0.568	0.707	0.2642	0.644	0.682
Postdust day 3	-0.0380	0.263	0.885	1.3276	0.642	0.039*	0.2850	0.576	0.621	1.6532	0.653	0.011*
Postdust day 4	0.0565	0.274	0.837	1.4168	0.668	0.034	-0.2787	0.599	0.642	0.3444	0.680	0.612
Postdust day 5	-0.4432	0.277	0.110	-0.6423	0.677	0.343	0.1344	0.607	0.825	0.4283	0.687	0.533
Postdust day 6	0.1626	0.204	0.426	-0.6487	0.507	0.201	-0.4905	0.455	0.281	-0.1937	0.529	0.714
Spring	-0.0897	0.116	0.438	0.6411	0.293	0.029*	0.2622	0.263	0.319	0.2768	0.319	0.386
Autumn	-0.1190	0.092	0.194	0.2837	0.232	0.222	0.1915	0.209	0.359	0.0639	0.254	0.801
Winter	-0.1297	0.137	0.344	1.3687	0.347	0.000***	1.5119	0.312	0.000***	2.0982	0.376	0.000***
AR1	0.0087	0.017	0.602	0.0481	0.017	0.004**	0.0505	0.017	0.002^{**}	0.1222	0.017	0.000***
AIC		3.7992			5.5813			5.3627			5.5983	
SC		3.8264			5.6085			5.3899			5.6255	
R ²		0.0449			0.2321			0.0966			0.4161	

Rome - Hospitalization

Dust days (19%) identified by LIDAR, CTM, PM₁₀:NO₂ ratio

Dust days (no dust): Mean PM_{10} =52 (37) µg/m³. $PM_{2.5}$ = 26 (23). $PM_{2.5-10}$ = 21 (15)

	PM _{2.5} (IQR=12.8 μg/m ³)		PM _{2.5-10} (IQR=10.8 μg/m ³)	
Cause	IR% (95% CI)	p-Interaction*	IR% (95% CI)	p-Interaction*
Cardiac diseases (lag 0–1) (ICD9: 390–429)	2.41 (-0.21 to 5.09)		3.93 (1.58 to 6.34)	
Saharan dust-free days	1.93 (-0.82 to 4.76)	-	3.83 (0.77 to 6.98)	-
Saharan dust-affected days	5.07 (-1.61 to 12.21)	0.378	4.03 (0.26 to 7.94)	0.934
Cerebrovascular diseases (lag 0) (ICD9: 430–438)	-2.14 (-4.73 to 0.53)		1.68 (-0.70 to 4.11)	
Saharan dust-free days	-2.85 (-5.62 to 0.00)	-	1.20 (-1.98 to 4.49)	-
Saharan dust-affected days	0.93 (-5.16 to 7.42)	0.250	1.86 (-1.85 to 5.72)	0.792
Diseases of the respiratory system (lag 0–5) (ICD9: 460–519)	-0.52 (-5.33 to 4.53)		4.77 (-0.57 to 10.40)	
Saharan dust-free days	-1.03 (-6.18 to 4.40)	-	-0.32 (-6.33 to 6.07)	-
Saharan dust-affected days	-1.45 (-11.58 to 9.85)	0.942	14.62 (5.34 to 24.72)	0.006
Diseases of the respiratory system 0-14 (lag 0-5) (ICD9: 460-519)	-2.14 (-9.09 to 5.35)		-1.20 (-8.52 to 6.71)	
Saharan dust-free days	-3.30 (-10.56 to 4.55)	-	-4.71 (-13.07 to 4.46)	-
Saharan dust-affected days	-1.50 (-16.59 to 16.31)	0.833	2.87 (-9.10 to 16.41)	0.299

*p Value of interaction term PM×Dust Index.

Dust also increased effect of PM_{10} on cerebrovascular diseases (5.04% vs 0.90%, p-Interaction=0.143) No $PM_{2.5}$ dust effect modification.

Alessandrini et al. Saharan dust and the association between particulate matter and daily hospitalisations in Rome, Italy. Occup Environ Med 2013;70:432–434. doi:10.1136/oemed-2012-101182

Taiwan – Stroke hospitalization

Dust days (N=46, 2000-2009)

- High regional PM and PM_{10-2.5}
- Mean duration 2.89 days

	Number of daily stroke admissions						
	Total						
Independent variable	β	SE	p Value				
Intercept	310.368	21.255	0.000***				
Trend	-0.010	0.002	0.000***				
Temperature	-3.674	0.404	0.000***				
SO ₂	14.289	2.272	0.000***				
CO	-71.498	21.107	0.000***				
Time since dust storm							
Day of dust storm	1.371	7.159	0.848				
Post-dust day 1	24.863	9.069	0.006**				
Post-dust day 2	19.438	10.139	0.048*				
Post-dust day 3	15.540	10.474	0.138				
Post-dust day 4	3.049	10.676	0.775				
Post-dust day 5	5.258	10.547	0.618				
Post-dust day 6	-7.829	8.795	0.373				
MA1	0.553	0.016	0.000***				
MA2	0.263	0.016	0.000***				
AIC	10.8850						
SC	10.9094						
B ²	0.4239						

Kang et al. Asian dust storm events are associated with an acute increase in stroke hospitalisation. J Epidemiol Community Health 2013; 57:125–131. doi: 10.1136/jech-2011-200794

Original Article

The Relationship Between Asian Dust Events and Out-of-Hospital Cardiac Arrests in Japan

Takahiro Nakamura¹, Masahiro Hashizume², Kayo Ueda³, Tatsuhiko Kubo⁴, Atsushi Shimizu⁵, Tomonori Okamura⁶, and Yuji Nishiwaki¹

No evidence of association with out of hospital cardiac arrest

Summary

- Short-term effects of PM_{10-2.5} on respiratory morbidity and mortality. Suggestive effects for cardiovascular disease
- Recent studies:
 - consistent impacts of PM_{10-2.5}, PM₁₀ (but not PM_{2.5})
 during dust events on asthma exacerbation/hospitalization
 - COPD hospitalization
 - Growing evidence for CVD hospitalization (MI, stroke)
 - Delayed effect (3 days)
- Limited studies from Middle East
 - Possibility of varying impacts by PM source area, aerosol age, co-factors

I Review of Evidence on Dust and Health II Exposure assessment in the GBD 2013

Michael Brauer

THE UNIVERSITY OF BRITISH COLUMBIA

1st AFRICA/MIDDLE-EAST EXPERT MEETING AND WORKSHOP ON THE HEALTH IMPACT OF AIRBORNE DUST AMMAN, JORDAN, 2-5 NOVEMBER 2015

Global air pollution assessments

- Global coverage
 - fine spatial resolution
 - consistent temporal trends
- GBD estimates also basis for
 - World Bank, World Health Organization, EPA BenMAPs, (OECD)
 - Source sector contributions
 - Motor vehicles
 - Solid fuel cooking, heating
 - Coal
 - Dust?

Risk factor definition: Outdoor air pollution

- Air pollution exposures are mixtures
- Relative contribution of different pollutants a function of location-specific
 - Economic/development, social, technological factors
 - meteorology, topography, geography (transport)
- Literature (measurements) for small number of selected pollutants
 - PM (TSP, PM₁₀, PM_{2.5}), O₃, NO_x, SO₂, CO...

Air pollution metrics: PM_{2.5}

- Most robust indicator in epidemiologic studies
- Biological plausibility supported by toxicology, dosimetry, studies of acute exposures, controlled exposures
- General indicator of combustion source air pollution
- Also incorporates respirable fraction of crustal PM ("dust")
- Evidence does not support differential risk based on PM_{2.5} mixture composition

Health impacts of PM constituents

Insufficient information to differentiate the health impacts of different PM constituents

– WHO, USEPA, IARC, GBD

WHO REVIHAAP*

- Carbonaceous material from traffic
- traffic-generated dust including road, brake and tyre wear
- **coal** combustion (**sulfate**-contaminated particles)
- **shipping** (**oil** combustion)
- **power** generation (**oil and coal** combustion)
- **metal** industry (**nickel**)
- biomass combustion (residential wood combustion, landscape fires)
- **desert dust** episodes (CVD hospitalizations, mortality)

26

- Final estimates based on average of (1.4 million) grid cell values (SAT, TM5) and calibrated (regression model) with measurements
 - 0.1° x 0.1° resolution
 - extrapolated to 2013 using 2010-2011 trend in SAT
- Incorporate variance between two estimates and measurements in uncertainty assessment
- Unique contributions from each approach

2013 Annual Average PM_{2.5}

2013 Annual Average PM_{2.5}

1990 – 2013 Change in Annual Average PM_{2.5}

TM5 - SAT

Calibration Regression Model By Super-Region

Available Measurements from N.Africa/Middle East

	GBD2013		GBD2	015	
Country	PM2.5	EST	PM2.5	EST	
(Turkey)		94	1	94	
Iran	6	10	6	14	
Bahrain	2		5		
Qatar		3	2	3	
UAE		3		17	
Afghanistan			2		
Egypt				2	
Jordan			3	12	
Kuwait			2	9	
Lebanon			2		
Morocco			1		
Oman				1	
Pakistan			7		
Saudi Arabia				7	
Tunisia				³⁴ 4	

Calibration Regression Model North Africa and Middle East

35

GBD2015 improvements to better capture regional differences & incorporate ground measurements

G. Shaddick

Summary

- GBD estimates for PM_{2.5} (and not other size fractions)
 - Evidence from dust storms, generally does not identify effects of $PM_{2.5}$ (vs $PM_{10-2.5}$, PM_{10})
- Global, high spatial resolution, internally consistent
- Temporal trends / temporal consistency
- Reflect chronic exposure: not sensitive to episodes (dust storms, landscape fires)
 - Capture contribution of dust to long term average PM_{2.5}