

Dust assessment and evolution via meteorological satellites

jose.prieto@eumetsat.int

EUMETSAT satellites

METEOSAT- 8: BACK UP AT 3.5°E

Instrument - Product - Application

- L0 raw measurement (count)
- L1- calibrated image (units)

- L2 <u>product</u> (purpose, classes)
- L3 quality controlled (reliability)
- L4 <u>model</u> output (future propagation)

Can a satellite see dust particles ?

 \leftarrow Dust particle 10 µm \rightarrow

 \leftarrow Earth globe 10 Mm \rightarrow

- From micro to mega, twelve orders of magnitude difference in size
- 10¹² kg in the atmosphere (10⁻⁷ of atmospheric mass) = fill all lorries!
- Disputed human contribution to global cooling (S.K. Satheesh, 2006)
- Inert tracer for atmospheric circulation
- Life vector (Saharan protozoa and bacteria to the Caribbean)

For land areas, infrared is more efficient

Best contrast ?	DAY	NIGHT
IR		
VIS		

Choose the field with best contrast between freesurfaces and dust areas

Ocean	DAY	NIGHT
IR	strong	strong
VIS	very strong	A/N/A

Desert	DAY	NIGHT
IR	very strong	weak
VIS	weak	A/N/A

Consecutive days in Fuerteventura, January 2010

Double detection from Meteosat

- On infrared imagery, dusty air appears cold in contrast to the hot daytime land surface.
- At **night**, the thermal difference between the background and the dust lessens. Dust is not raised in the absence of thermals or convection.
- On solar imagery over water, dust is easy to notice. Over land, however, the dust plume and dry surfaces look similar. Time animations evidence dust over ground.

Dust at the moonlight

Dust on solar and infrared images

2004-05-13 13:00 UTC, 0.8 µm

Dust reflects back solar energy to spaceMidday, unfavourable reflection conditions

Same date and time, 10.8 μm •Dusty air rises (**cools** down)

Desert scene, Sudan

DUST RGB composite: the strength of infrared for dust detection

Solar RGB composite based on channels at 1.6, 0.8 and 0.6 μm

IR RGB composite based on channels at 8.7, 10.8 and 12.0 μm

Aerosol and health

World Atlas of Atmospheric Pollution. Editor: R. S. Sokhi

Impact on: agriculture (fertile fields), climate (radiative balance), aviation (ash in routes)

Air transports dust and much more

Forward fraction=exp(-AOD)

AEROSOL

Dust Marine salt Smoke (biomass burn, industrial carbon) Ash Pollen [Cloud droplets and ice crystals ?-Not an aerosol]

Dust characteristics

- Dust storms occasionally reach 5 km height, frequently thicker than 1km
- Over land, dust optical depth is typically around 0.5 or 2 for storms, in the visible range. Efficient thickness in the IR is about 40% of those values.
- Dust absorbs and scatters infrared radiation in the Mie region
- Aerosol density average in the atmosphere 10⁻⁷ kg/m3 (optical depth 0.1)

Using infrared channels for dust detection

Meteosat thermal channels detect PM2.5 and PM10 in high atmospheric levels

□ In addition they indicate the probable origin and current location of similar particles close to the ground

Dust seen at a single infrared (IR) channel

-Variable limits for colour enhancement-Uncertain nature of the cold area (cloud?)-Possible mixture of cloud and dust

2004 May 13th 13:00 Meteosat **10.8µm** colour-enhanced (left) and gray-enhanced (below)

Ch9 (upper left), two independent differences, and all together as colour

The 10.8µm-12µm difference (vertical)

Dust RGB 21 March 2010 12UTC

pink is not always dust

Met-8, 2013 July 12 12UTC, ch9-ch10, ch7-ch9 (-17K to 5K) differences and Dust RGB

Comparison of water cloud and dust in the IR window

Decision tree

DUST TRACES

- 1. Subjective verification against masks, images and news media
- 2. Verification from other sources (AERONET, LIDAR)
- 3. Inter-comparison with other methods (Solar)

Graphical validation

threshold ch9-ch10 < -1.3K AOT =1.7, strong depth threshold ch9-ch10 < -1.3K AOT =2.8, too strong depth Due to location of minimum threshold NOT < -1.3K AOT not calculated

The cloud-to-dust spiral in the differences diagram

2004-05-13 13:00 UTC, 10.8 µm

- 1: Thick high cloud
- 2: Broken low cloud
- 3: Ground, drier air towards 4
- 4: Dust cloud

SAMPLE VALIDATION

based on AERONET ground measurements

Good agreement (+/- 30%) over **desert** grounds

Over the ocean or islands, lack of model sensitivity due to insufficient temperature contrast, dust thinness or uniform background for neighbour calculation

□ Better match for **coarse** than for fine aerosol

No sample validation done so far for dust temperatures (heights), using ground temperature. This is essential for evaluation of the thermal deficit

Low level dust forming a dust wall in Niamey (courtesy of E. Kploguede)

Source: IMAGE GALLERY

Dust source activation frequencies, Number of days of dust storm NDS, Number of wind episodes (NWE)

0-28

44.96

96 - 280

28 - 44

0 - 200

200 - 236

236 - 311

311 - 408

Sand dunes

Leptosols

Calcisols

Arenosols

Gypsisols

Solonetz

XXX Salt flats

Solonchaks

Meningitis cases (several years) and dust concentration (march 2006)

02

68 70 72 74

66

73

76

Julian Day

Effect of water condensation on dust

Conclusions

•Meteosat provides continuous <u>coverage</u> of Middle East and Northern Africa through 96 timely observations per day with a 4-km horizontal resolution.

•Infrared channels retrieve <u>thickness</u> and height of the dust, except for thermal inversions.

•Concurrent use of in-situ observations, satellite measurements and numerical models give a full <u>description</u> of the current and future dust distribution.

•On-going studies should clarify the influence of dust in <u>epidemics</u> and health levels for countries in the region.

THANKS FOR YOUR ATTENTION !

•List of used events:

- •2004-05-13 12:00, Sudan and Saudi Arabia
- •2008-02-02 06:00, Saudi Arabia
- •2008-03-23 12:00, Libya

•2009-03-28 18:00, Argentina

http://onlinelibrary.wiley.com/doi/10.1029/2007GL030 168/full

