You are here: Home / Methods / The NMMB/MONARCH model


Go to the dust forecast


The NMMB/MONARCH (formerly NMMB/BSC-Dust) (Pérez et al., 2011; Haustein et al., 2012) is an online multi-scale atmospheric dust model designed and developed at the Barcelona Supercomputing Center (BSC-CNS) in collaboration with the NOAA's National Centers for Environmental Prediction (NCEP), the NASA's Goddard Institute for Space Studies and the International Research Institute for Climate and Society (IRI). The dust model is fully embedded into the Non-hydrostatic Multiscale Model NMMB developed at NCEP (Janjic, 2005; Janjic and Black, 2007; Janjic et al., 2011) and is intended to provide short to medium-range dust forecasts for both regional and global domains.

The NMMB/MONARCH model can become a useful research tool that will improve our understanding of the dust cycle by bridging the gap among the multiple scales involved. These developments represent the first step towards a unified multiscale chemical-weather prediction system (Jorba et al., 2012).

Main features

The NMMB/MONARCH model solves the mass balance equation for dust taking into account the following processes: 
  • Dust generation and uplift by surface wind and turbulence. A physically-based dust emission scheme which explicitly takes account saltation and sandblasting processes (White, 1979; Marticorena and Bergametti, 1995; Marticorena et al., 1997) and assumes a viscous sublayer between the smooth desert surface and the lowest model layer (Janjic, 1994; Nickovic et al., 2001). 
  • To specify the soil size distribution we use the soil textures of the hybrid STATSGO-FAO soil map. In this database, the FAO two-layer 5-minute global soil texture is remapped into a global 30-second regular latitude-longitude grid. 4 soil populations are used in the model distinguishing among fine-medium sand and coarse sand according to the criteria used in Tegen et al. (2002). The dust vertical flux is distributed according to D’Almeida (1987) and then distributed over each 8 dust size transport bins with intervals taken from Tegen and Lacis (1996) and Pérez et al. (2006). For the source function, the model uses the topographic preferential source approach after Ginoux et al. (2001) and the National Environmental Satellite, Data, and Information Service (NESDIS) vegetation fraction climatology (Ignatov and Gutman, 1998).
  • Soil wetness effects on dust production (Fécan et al. 1999).
  • Horizontal and vertical advection (Janjic et al., 2009).
  • Horizontal diffusion and vertical transport by turbulence and convection (Janjic et al., 2009).
  • Dry deposition and gravitational settling (Zhang et al., 2001).
  • Wet removal which includes in-cloud and below-cloud scavenging from convective and stratiform clouds (Betts, 1986; Betts and Miller, 1986; Janjic, 1994; Ferrier et al., 2002).
  • Furthermore, in order to take into account the effects of aerosols and mineral dust interactively, the rapid radiative transfer model (RRTM) (Mlawer et al., 1997) is implemented in the model.

The NMMB/MONARCH model has been evaluated at regional and global scales (Pérez et al., 2011; Haustein et al., 2012). At the global scale, the model lies within the top range of AEROCOM dust models in terms of performance statistics for surface concentration, deposition and aerosol optical depth (AOD). At regional scale, the model reproduces significantly well the daily variability and seasonal spatial distribution of the dust optical depth over Northern Africa, Middle East and Europe. 


Betts, A. K.: A new convective adjustment scheme. Part 1: Observational and theoretical basis, Q. J. Roy. Meteor. Soc., 112, 677–691, doi:10.1002/qj.49711247307, 1986.

Betts, A. K. and Miller, M. J.: A new convective adjustment scheme. Part 2: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets, Q. J. Roy. Meteor. Soc., 112, 693–709, doi:10.1002/qj.49711247308, 1986.

D'Almeida, G. A.: On the variability of desert aerosol radiative characteristics, J. Geophys. Res., 92, 3017-3026, 1987.

Ferrier, B. S., Jin, Y., Lin, Y., Black, T., Rogers, E., and DiMego, G.: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model, in: Proc. 15th Conf. on Numerical Weather Prediction, 12–16 August 2002, San Antonio, TX, Amer. Meteor. Soc., pp. 280–283, 2002.

Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.: Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20255-20274 10.1029/2000JD000053 2001.

Haustein, K., Pérez, C., Baldasano, J. M., Jorba, O., Basart, S., Miller, R. L., Janjic, Z., Black, T., Nickovic, S., Todd, M. C., Washington, R., Müller, D., Tesche, M., Weinzierl, B., Esselborn, M. and Schladitz, A.: Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model–Part 2: Experimental campaigns in Northern Africa, Atmos. Chem. Phys., 12, 2933–2958, doi:10.5194/acp-12-2933-2012, 2012.

Ignatov, A. and Gutman, G.: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models, Int. J. Remote Sens., 19, 1533–1543, doi:10.1080/014311698215333, 1998.

Janjic, Z. I.: The Step-mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer and turbulence closure schemes, Mon. Weather Rev., 122, 927– 945, 1994.

Janjic, Z. I.: A unified model approach from meso to global scales. Geophys. Res. Abstracts, 7, SRef{ID: 1607{7962/gra/EGU05{A{05 582, 2005.

Janjic, Z. I. and Black, T: A unified model approach from meso to global scales. Geophys. Res. Abstracts, 7, SRef{ID: 1607{7962/gra/EGU2007{A{05 025, 2007.

Janjic, Z., Huang, H., and Lu, S.: A unified atmospheric model suitable for studying transport of mineral aerosols from meso to global scales, IOP C. Ser. Earth Env., 7, 012011, http: 25 //, doi:10.1088/1755-1307/7/1/012011, 2009.

Janjic, Z., Janjic, T., and Vasic, R.: A Class of conservative fourth order advection schemes and impact of enhanced formal accuracy on extended range forecasts, Mon. Weather Rev., 0, null, doi:10.1175/2010MWR3448.1, 2011.

Jorba, O., Dabdub, D., Blaszczak-Boxe, C., Pérez, C., Janjic, Z., Baldasano, J. M., Spada, M., Badia, A. and Gonçalves, M.: Potential significance of photoexcited NO2 on global air quality with the NMMB/BSC chemical transport model, J. Geophys. Res., doi:10.1029/2012JD017730, in press, 2012. 

Marticorena, B., and Bergametti, G.: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, J. Geophys. Res., 100, 6415-16430, 1995.

Marticorena, B., Bergametti, G., Aumont, B., Callot, Y., N’Doume, C., and Legrand, M.: Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources, J. Geophys. Res, 102, 4387-4404, 1997.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682, 1997.

Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., and Ozsoy, E.: Interactive dust-radiation modeling: A step to improve weather forecasts, J. Geophys. Res., 11, doi:10.1029/2005JD006717, 2006.

Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J.M., Black, T., Basart, S., Nickovic, S., Miller, R.L., Perlwitz, J., Schulz, M. and Thomson, M.: An online mineral dust aerosol model for meso to global scales: Model description, annual simulations and evaluation, Atmos. Chem. Phys., 11, 13001-13027, doi: 10.5194/acp-11-13001-2011, 2011.

Tegen, I., and Lacis, A. A.: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol, 101, 19237-19244, 1996.

Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., and Heimann, M.: Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study, J. Geophys. Res., 107, 2002.

White, B. R.: Soil transport by winds on Mars. J. Geophys. Res. 84, 4643-4651, 1979.

Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549-560, 2001.

Related content